已知兩圓的半徑分別為6和8,圓心距為7,則兩圓的位置關(guān)系是
 
考點(diǎn):圓與圓的位置關(guān)系
專題:
分析:由兩圓的半徑分別是6和8,圓心距為7,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系即可得出兩圓位置關(guān)系.
解答:解:∵兩圓的半徑分別是6和8,
∴6+8=14,8-6=2,
∵圓心距為7,2<7<14,
∴這兩圓的位置關(guān)系是相交.
故答案為:相交.
點(diǎn)評(píng):此題考查了圓與圓的位置關(guān)系.此題比較簡(jiǎn)單,解題的關(guān)鍵是掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

有一個(gè)六邊形的半徑為4cm,則這個(gè)六邊形的面積為( 。
A、6
3
cm2
B、12
3
cm2
C、24
3
cm2
D、48
3
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線y=x+3交反比例函數(shù)y=
k
x
的圖象于點(diǎn)A,交x軸于點(diǎn)B,且過(guò)點(diǎn)C(-1,2),將直線AB向下平移,線段CA平移到線段OD,當(dāng)點(diǎn)D也在反比例函數(shù)y=
k
x
的圖象上時(shí),則k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,點(diǎn)C(-3,0),點(diǎn)A、B分別在x軸、y軸的正半軸上,且滿足(OB-
3
2+
OA-1
=0.
(1)求點(diǎn)A、B的坐標(biāo);
(2)若點(diǎn)P從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿射線CB運(yùn)動(dòng),連接AP.設(shè)△ABP的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.
(3)在(2)的條件下,是否存在點(diǎn)P,使以點(diǎn)A、B、P為頂點(diǎn)的三角形與△AOB相似?若存在,直接寫(xiě)出點(diǎn)P坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1
2
x+
1
3
y=5
x+y=13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是⊙O的直徑,點(diǎn)C、D在⊙O上,∠BAC=30°,則∠D的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=(a-2)x-3a-1,當(dāng)自變量x的取值范圍是3≤x≤5時(shí),y既能達(dá)到大于5的值,又能取到小于3的值,則實(shí)數(shù)a的取值范圍是( 。
A、a<3B、a>5
C、a>8D、任意實(shí)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一次測(cè)試九年級(jí)若干名學(xué)生1分鐘跳繩次數(shù)的頻數(shù)分布直方圖如圖.請(qǐng)根據(jù)這個(gè)直方圖回答下面的問(wèn)題:
(1)在頻數(shù)分布直方圖上畫(huà)出頻數(shù)分布折線圖,并求自左至右最后一組的頻率;
(2)若圖中自左至右各組的跳繩平均次數(shù)分別為137次,146次,156次,164次,177次.小麗按以下方法計(jì)算參加測(cè)試學(xué)生跳繩次數(shù)的平均數(shù)是:(137+146+156+164+177)÷5=156.請(qǐng)你判斷小麗的算式是否正確,若不正確,寫(xiě)出正確的算式(只列式不計(jì)算);
(3)如果測(cè)試所得數(shù)據(jù)的中位數(shù)是160次,那么測(cè)試次數(shù)為160次的學(xué)生至少有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x1,x2是關(guān)于x的一元二次方程x2+(3a-1)x+2a2-1=0的兩個(gè)實(shí)數(shù)根,其滿足(3x1-x2)(x1-3x2)=-80.求實(shí)數(shù)a的所有可能值.

查看答案和解析>>

同步練習(xí)冊(cè)答案