【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示正整數(shù)后,背面朝上,洗勻放好,現(xiàn)從中隨機(jī)抽取一張(不放回),再從剩下的卡片中隨機(jī)抽取一張.
(1)請用樹狀圖或列表的方法表示兩次抽取卡片的所有可能出現(xiàn)的結(jié)果(卡片用A,B,C,D表示);
(2)我們知道,滿足的三個正整數(shù)a,b,c成為勾股數(shù),求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率.
【答案】(1)答案見解析;(2).
【解析】
試題分析:(1)利用樹狀圖展示12種等可能的結(jié)果數(shù);
(2)根據(jù)勾股數(shù)可判定只有A卡片上的三個數(shù)不是勾股數(shù),則可從12種等可能的結(jié)果數(shù)中找出抽到的兩張卡片上的數(shù)都是勾股數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.
試題解析:(1)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù);
(2)抽到的兩張卡片上的數(shù)都是勾股數(shù)的結(jié)果數(shù)為6,所以抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系中,點P(x,y)在第三象限,且P到x軸和y軸的距離分別為3、7,則點P的坐標(biāo)為( 。
A.(﹣3,﹣7)
B.(﹣7,﹣3)
C.(3,7)
D.(7,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26,≈1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料:
如圖1,在數(shù)軸上A點衰示的數(shù)為a,B點表示的數(shù)為b,則點A到點B的距離記為AB.線段AB的長可以用右邊的數(shù)減去左邊的數(shù)表示,即AB﹣b﹣a.
請用上面的知識解答下面的問題:
如圖2,一個點從數(shù)軸上的原點開始,先向左移動1cm到達(dá)A點,再向左移動2cm到達(dá)B點,然后向右移動7cm到達(dá)C點,用1個單位長度表示1cm.
(1)請你在數(shù)軸上表示出A.B.C三點的位置:
(2)點C到點人的距離CA= cm;若數(shù)軸上有一點D,且AD=4,則點D表示的數(shù)為 ;
(3)若將點A向右移動xcm,則移動后的點表示的數(shù)為 ;(用代數(shù)式表示)
(4)若點B以每秒2cm的速度向左移動,同時A.C點分別以每秒1cm、4cm的速度向右移動.設(shè)移動時間為t秒,
試探索:CA﹣AB的值是否會隨著t的變化而改變?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=4cm,BC=6cm,現(xiàn)有一動點P從A出發(fā)以2cm/秒的速度,沿矩形的邊A—B—C—D回到點A,設(shè)點P的運動時間為t秒。
(1)當(dāng)t=3秒時,求△ABP的面積;
(2)當(dāng)t為何值時,點P與點A的距離為5cm?
(3)當(dāng)t為何值時(2<t<5),以線段AD、CP、AP的長度為三角形是直角三角形,且AP是斜邊。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com