如圖,P是⊙O外一點(diǎn),割線POB與⊙O相交于A、B,切線PC與⊙O相切于C,若PA=2,PC=3,求⊙O的半徑.

【答案】分析:設(shè)圓半徑為r,根據(jù)切割線定理得到PC2=PA•PB,代入得出方程32=2(2+2r),求出方程的解即可.
解答:解:設(shè)圓半徑為r 由切割線定理,
得 PC2=PA•PB,
∴32=2(2+2r),
解得 ,
∴⊙O 的半徑為
點(diǎn)評(píng):本題考查了切割線定理的應(yīng)用,關(guān)鍵是根據(jù)題意得出方程,題目比較典型,難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,P是⊙O外一點(diǎn),PA切⊙O于A,AB是⊙O的直徑,PB交⊙O于C,若PA=2cm,∠B=30°,求出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•重慶) 如圖,P是⊙O外一點(diǎn),PA是⊙O的切線,PO=26cm,PA=24cm,則⊙O的周長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•順義區(qū)二模)已知:如圖,P是⊙O外一點(diǎn),PA切⊙O于點(diǎn)A,AB是⊙O的直徑,BC∥OP交⊙O于點(diǎn)C.
(1)判斷直線PC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若BC=2,sin
1
2
∠APC=
1
3
,求PC的長(zhǎng)及點(diǎn)C到PA的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,P是⊙O外一點(diǎn),PA、PB切⊙O于點(diǎn)A、B,點(diǎn)C在優(yōu)弧AB上,若么P=68°,則∠ACB等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,P是⊙O外一點(diǎn),PA和PB是⊙O的切線,A,B為切點(diǎn),P O與AB交于點(diǎn)M,過(guò)M任作⊙O的弦CD.
求證:∠CPO=∠DPO.

查看答案和解析>>

同步練習(xí)冊(cè)答案