【題目】如圖,在中,,,點(diǎn)在邊上,,,點(diǎn)分別是邊,上的動(dòng)點(diǎn),連接,則的最小值為_________.

【答案】

【解析】

作點(diǎn)D關(guān)于AB的對(duì)稱點(diǎn)G,過點(diǎn)GGF于點(diǎn)FAB于點(diǎn)E,此時(shí)取得最小值. 先證出ACGF,得∠GEA=A=30=DEA,可得DE=AD=4,由勾股定理求得EM的長(zhǎng),根據(jù)30角的直角三角形的特點(diǎn)以及勾股定理再求出AB,EF,即可得的值.

作點(diǎn)D關(guān)于AB的對(duì)稱點(diǎn)G,過點(diǎn)GGF于點(diǎn)FAB于點(diǎn)E,此時(shí)取得最小值.

GF

∴∠GFB=C=90

ACGF

∴∠GEA=A=30

∴∠DEA=30

DE=AD=4

DM=2

EM=

AE=4

AC=AD+CD=4+5=9

A=30

BC=,∠B=60

,

AB=

BE=AB-AE=BF=BE=,

EF==3

DE+EF的最小值是4+3=7.

故答案為:7.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°

(1)請(qǐng)判斷ABCD的位置關(guān)系并說明理由;

(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問∠BAE∠MCD是否存在確定的數(shù)量關(guān)系?

(3)如圖3,在(1)的結(jié)論下,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+∠CQP∠BAC有何數(shù)量關(guān)系? (2、3小題只需選一題說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩地相距20千米,甲、乙兩人都從A地去B地,圖中射線l1l2分別表示甲、乙兩人所走路程s(千米)與時(shí)間t(小時(shí))之間的關(guān)系.

下列說法:

①乙晚出發(fā)1小時(shí);

②乙出發(fā)3小時(shí)后追上甲;

③甲的速度是4千米/小時(shí),乙的速度是6千米/小時(shí);

④乙先到達(dá)B地.其中正確的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 ,并寫出不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅游商品經(jīng)銷店欲購(gòu)進(jìn)AB兩種紀(jì)念品,若用380元購(gòu)進(jìn)A種紀(jì)念品7件,B種紀(jì)念品8件;也可以用380元購(gòu)進(jìn)A種紀(jì)念品10件,B種紀(jì)念品6件.

1)求A、B兩種紀(jì)念品的進(jìn)價(jià)分別為多少?

2)若該商店每銷售1A種紀(jì)念品可獲利5元,每銷售1B種紀(jì)念品可獲利7元,該商店準(zhǔn)備用不超過900元購(gòu)進(jìn)A、B兩種紀(jì)念品40件,且這兩種紀(jì)念品全部售出時(shí)總獲利不低于216元,問應(yīng)該怎樣進(jìn)貨,才能使總獲利最大,最大為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,點(diǎn)的中點(diǎn),點(diǎn)上的一點(diǎn)(點(diǎn)不與點(diǎn),重合).過點(diǎn),點(diǎn)作直線的垂線,垂足分別為點(diǎn)和點(diǎn).

1. 2.

1)如圖1,求證:;(2)如圖2,連接,,請(qǐng)判斷線段之間的數(shù)量關(guān)系和位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1各單位,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)△ABC的頂點(diǎn)A,B的坐標(biāo)分別為(1,4),(﹣3,1).

(1)請(qǐng)?jiān)诰W(wǎng)格所在的平面內(nèi)作出符合上述表述的平面直角坐標(biāo)系;

(2)請(qǐng)你將A、B、C的橫坐標(biāo)不變,縱坐標(biāo)乘以﹣1所得到的點(diǎn)A1、B1、C1描在坐標(biāo)系中,并畫出△A1B1C1,其中點(diǎn)C1的坐標(biāo)為   

(3)△ABC的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,以AC為直徑的⊙O與邊AB,BC分別交于點(diǎn)D,E.過E的直線與⊙O相切,與AC的延長(zhǎng)線交于點(diǎn)G,與AB交于點(diǎn)F.

(1)求證:△BDE為等腰三角形;
(2)求證:GF⊥AB;
(3)若⊙O半徑為3,DF=1,求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)若a=cos45°,b=(π+1)0 , c= ,d=(﹣ 1 , 化簡(jiǎn)得
a= , b= , c= , d=;
(2)在(1)的條件下,試計(jì)算 ﹣cd.

查看答案和解析>>

同步練習(xí)冊(cè)答案