【題目】如圖,AB是⊙O的直徑,DC為⊙O的切線,DE⊥AB,垂足為點E,交⊙O于點F,弦AC交DE于點P,連接CF.
(1)求證:∠DPC=∠PCD;
(2)若AP=2,填空:
①當∠CAB= 時,四邊形OBCF是菱形;
②當AC=2AE時,OB= .
【答案】(1)見解析;(2)①30°,②2
【解析】
(1)由切線的性質(zhì)和等腰三角形的性質(zhì)可得∠CAO=∠ACO,∠DEA=∠OCD=90°,可得∠DCA=∠APE=∠DPC;
(2)①由菱形的性質(zhì)可得OB=BC,可證△OBC是等邊三角形,即可求解;
②由圓周角定理可得∠ACB=90°=∠AEP,通過證明△APE∽△ABC,由相似三角形的性質(zhì)可求解.
(1)如圖,連接OC,OF,BC,
∵OA=OC,
∴∠CAO=∠ACO,
∵DC為⊙O的切線,
∴OC⊥DC,且DE⊥AB,
∴∠DEA=∠OCD=90°,
∴∠CAO+∠APE=90°,∠ACO+∠DCA=90°
∴∠DCA=∠APE=∠DPC,
(2)①當∠CAB=30°時,四邊形OBCF是菱形;
若四邊形OBCF是菱形,
∴OB=BC,且OB=OC,
∴△OBC是等邊三角形,
∴∠COB=60°
∵AO=CO,
∴∠CAB=30°,
∴當∠CAB=30°時,四邊形OBCF是菱形;
②∵AB是直徑,
∴∠ACB=90°=∠AEP,且∠CAB=∠PAE,
∴△APE∽△ABC,
∴,且AC=2AE
∴AB=4,
∵AB=2OB
∴OB=2
故答案為:30°,2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用一段長為30m的籬笆圍成一個一邊靠墻的矩形菜園(矩形ABCD),墻長為22m,這個矩形的長AB=xm,菜園的面積為Sm2,且AB>AD.
(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)若要圍建的菜園為100m2時,求該萊園的長.
(3)當該菜園的長為多少m時,菜園的面積最大?最大面積是多少m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長線上的一點,AE⊥CD交DC的延長線于E,交⊙O于G,CF⊥AB于F,點C是弧BG的中點.
(1)求證:DE是⊙O的切線;
(2)若AF,BF(AF>BF)是一元二次方程x2﹣8x+12=0的兩根,求CE和AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是角平分線,平分交于點,經(jīng)過兩點的交于點,交于點,恰為的直徑.
(1)求證:與相切;
(2)當時,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代偉大的數(shù)學(xué)家劉徽將直角三角形分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理.如圖,若a=4,b=6,則該直角三角形的周長為( 。
A.18B.20C.24D.26
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+5與x軸交于A(﹣1,0),B(5,0)兩點(點A在點B的左側(cè)),與y軸交于點C.
(1)求拋物線的解析式;
(2)點D是第一象限內(nèi)拋物線上的一個動點(與點C,B不重合),過點D作DF⊥x軸于點F,交直線BC于點E,連接BD,直線BC能否把△BDF分成面積之比為2:3的兩部分?若能,請求出點D的坐標;若不能,請說明理由.
(3)若M為拋物線對稱軸上一動點,使得△MBC為直角三角形,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被3等分,指針落在每個扇形內(nèi)的機會均等.
(1)現(xiàn)隨機轉(zhuǎn)動轉(zhuǎn)盤一次,停止后,指針指向2的概率為 ;
(2)小明和小華利用這個轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認為對雙方公平嗎?請用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙是△的外接圓,是⊙的直徑,是延長線上的一點,交的延長線于,交⊙于,于,點是弧的中點.
⑴求證:是⊙的切線;
⑵若是一元二次方程的兩根,求和的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,已知,,,點在的延長線上,點在的延長線上,有下列結(jié)論:①;②;③;④若,則點到的距離為.則其中正確結(jié)論的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com