【題目】如圖,在△ABC中,AB=AC,CD=CB,若∠ACD=42°,求∠A的度數(shù).
【答案】∠A=32°.
【解析】
設(shè)∠BAC=x,根據(jù)等邊對等角及三角形外角的性質(zhì)得出∠B=∠BDC=42°+x,∠ADC=∠B+∠BCD=42°+x+x=42°+2x,再根據(jù)鄰補(bǔ)角定義得出∠ADC+∠BDC=180°,由此列出方程42°+2x+42°+x=180°,解方程即可.
設(shè)∠BAC=x,則∠BDC=42°+x.
∵CD=CB,
∴∠B=∠BDC=42°+x.
∵AB=AC,
∴∠ACB=∠B=42°+x,
∴∠BCD=∠ACB-∠ACD=x,
∴∠ADC=∠B+∠BCD=42°+x+x=42°+2x.
∵∠ADC+∠BDC=180°,
∴42°+2x+42°+x=180°,
解得x=32°,
所以∠BAC═32°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在樓房MN前有兩棵樹與樓房在同一直線上,且垂直于地面,為了測量樹AB,CD的高度,小明爬到樓房頂部M處,光線恰好可以經(jīng)過樹CD的頂部C點(diǎn)到達(dá)樹AB的底部B點(diǎn),俯角為45°,此時(shí)小亮測得太陽光線恰好經(jīng)過樹CD的頂部C點(diǎn)到達(dá)樓房的底部N點(diǎn),與地面的夾角為30°,樹CD的影長DN為15米.請求出樹AB、CD的高度?(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】看圖填空:
(1)∠1和∠3是直線________被直線____所截得的______;
(2)∠1和∠4是直線_________被直線____所截得的______;
(3)∠B和∠2是直線_________被直線_____所截得的______;
(4)∠B和∠4是直線_________被直線_____所截得的_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知點(diǎn)D在線段AB的反向延長線上,過AC的中點(diǎn)F作線段GE交∠DAC的平分線于E,交BC于G,且AE∥BC.
(1)求證:△ABC是等腰三角形;
(2)若AE=8,AB=10,GC=2BG,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,點(diǎn)C(1,2)、A(-2,0),則點(diǎn)B的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織學(xué)生乘汽車去自然保護(hù)區(qū)野營,先以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;原路返回時(shí),汽車以40km/h的速度下坡,又以50km/h的速度走平路,共用了6 h。問平路和坡路各有多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計(jì)劃第二天租用新能源汽車自駕出游。
根據(jù)以上信息,解答下列問題:
(1)設(shè)租車時(shí)間為 小時(shí),租用甲公司的車所需費(fèi)用為 元,租用乙公司的車所需費(fèi)用為 元,分別求出 , 關(guān)于 的函數(shù)表達(dá)式;
(2)請你幫助小明計(jì)算并選擇哪個(gè)出游方案合算。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2,且l3和l1,l2分別交于A,B兩點(diǎn),點(diǎn)P在AB上.
(1)試找出∠1,∠2,∠3之間的關(guān)系并說出理由;
(2)如果點(diǎn)P在A,B兩點(diǎn)之間運(yùn)動(dòng),問∠1,∠2,∠3之間的關(guān)系是否發(fā)生變化?
(3)如果點(diǎn)P在A,B兩點(diǎn)外側(cè)運(yùn)動(dòng),試探究∠1,∠2,∠3之間的關(guān)系(點(diǎn)P和A,B不重合).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com