(-5.125)-|-1+3-
1
8
|-|-3
1
2
|-[4
1
2
-(-4
1
2
)]
考點:有理數(shù)的加減混合運算
專題:計算題
分析:原式先計算絕對值里邊的運算,再利用絕對值的代數(shù)意義化簡,計算即可得到結果.
解答:解:原式=-
41
8
-
15
8
-3
1
2
-4
1
2
-4
1
2
=-7-9-3
1
2
=-19.5.
點評:此題考查了有理數(shù)的加減混合運算,熟練掌握運算法則是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知在△ABC中,∠ACB=90°,CA=CB=6
2
,CD⊥AB于D,點E在直線CD上,DE=
1
2
CD,點F在線段AB上,M是DB的中點,直線AE與直線CF交于N點.
(1)如圖1,若點E在線段CD上,請分別寫出線段AE和CM之間的位置關系和數(shù)量關系:
 
 
;
(2)在(1)的條件下,當點F在線段AD上,且AF=2FD時,求證:∠CNE=45°;
(3)當點E在線段CD的延長線上時,在線段AB上是否存在點F,使得∠CNE=45°?若存在,請直接寫出AF的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列敘述錯誤的是( 。
A、所有的命題都有條件和結論
B、所有的命題都是定理
C、所有的定理都是命題
D、所有的公理都是真命題

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,AB=AC,∠BAC=90°,∠ABE=∠EBC,CE⊥BD的延長線于E,求證:BD=2CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為菱形.
(1)用直尺和圓規(guī)作出過菱形的頂點A、B、C的圓,記為⊙O;(要求保留作圖痕跡,不必寫出作法)
(2)連接OA,當∠D=70°時,求∠OAB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,DE為半圓的直徑,O為圓心,DE=10,延長DE到A,使得EA=1,直線AC與半圓交于B、C兩點,且∠DAC=30°.
(1)求弦BC的長;
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

3
-2)2003•(
3
+2)2004
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列運算正確的是( 。
A、
a2
=±a
B、
24
3
2
=6
C、
18
÷
2
=9
D、4
3
-
27
=1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC在方格紙中.
(1)請在方格紙上建立平面直角坐標條,使A點坐標為(2,3),并求出B點坐標;
(2)以原點O為位似中心,相似化為1:2,在第一象限內(nèi)畫出△A′B′C′,使△ABC∽△A′B′C′;
(3)計算△A′B′C′的面積S.

查看答案和解析>>

同步練習冊答案