【題目】下列命題為真命題的是(

A.兩組身高數(shù)據(jù)的方差分別是,那么乙組的身高比較整齊

B.“明天下雨”是必然事件

C.一組數(shù)據(jù)3,5,4,5,67的眾數(shù)、中位數(shù)和平均數(shù)都是5

D.為了解某燈管的使用壽命,可以采用普查的方式進行

【答案】C

【解析】

根據(jù)方差的意義、隨機事件、眾數(shù)、中位數(shù)、平均數(shù)以及全面調(diào)查和抽樣調(diào)查的定義分別對每一項進行分析,即可得出答案.

解:A.S20.01,S20.02,∴S2S2,∴甲組的身高比較整齊,故A選項是假命題;
B.“明天下雨是隨機事件,故B選項是假命題;
C.數(shù)據(jù)3,5,4,56,7的眾數(shù)是5,中位數(shù)是5,平均數(shù)是(354567)÷65,故C選項是真命題;
D.由于了解某燈管的使用壽命會給燈管帶來損傷破壞,所以不宜采用普查的方式進行,故D選項是假命題;
故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知是非零實數(shù),,在同一平面直角坐標系中,二次函數(shù)與一次函數(shù)的大致圖象不可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O.AC=8cm,BD=6cm,點PAC上一動點,點P1cm/的速度從點A出發(fā)沿AC向點C運動.設運動時間為ts,當t=_____s時,△PAB為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)是我國的傳統(tǒng)節(jié)日,人們素有吃粽子的習俗,某商場在端午節(jié)來臨之際用3000元購進、兩種粽子1100個,購買種粽子與購買種粽子的費用相同,已知粽子的單價是種粽子單價的1.2.

1)求、兩種粽子的單價各是多少?

2)若計劃用不超過7000元的資金再次購買兩種粽子共2600個,已知、兩種粽子的進價不變,求中粽子最多能購進多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】扶貧工作小組對果農(nóng)進行精準扶貧,幫助果農(nóng)將一種有機生態(tài)水果拓寬了市場.與去年相比,今年這種水果的產(chǎn)量增加了1000千克,每千克的平均批發(fā)價比去年降低了1元,批發(fā)銷售總額比去年增加了

1)已知去年這種水果批發(fā)銷售總額為10萬元,求這種水果今年每千克的平均批發(fā)價是多少元?

2)某水果店從果農(nóng)處直接批發(fā),專營這種水果.調(diào)查發(fā)現(xiàn),若每千克的平均銷售價為41元,則每天可售出300千克;若每千克的平均銷售價每降低3元,每天可多賣出180千克,設水果店一天的利潤為元,當每千克的平均銷售價為多少元時,該水果店一天的利潤最大,最大利潤是多少?(利潤計算時,其它費用忽略不計.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一帶一路的戰(zhàn)略構(gòu)想為國內(nèi)許多企業(yè)的發(fā)展帶來了新的機遇,某公司生產(chǎn)A,B兩種機械設備,每臺B種設備的成本是A種設備的1.5倍,公司若投入16萬元生產(chǎn)A種設備,36萬元生產(chǎn)B種設備,則可生產(chǎn)兩種設備共10臺.請解答下列問題:

(1)A、B兩種設備每臺的成本分別是多少萬元?

(2)AB兩種設備每臺的售價分別是6萬元,10萬元,公司決定生產(chǎn)兩種設備共60臺,計劃銷售后獲利不低于126萬元,且A種設備至少生產(chǎn)53臺,求該公司有幾種生產(chǎn)方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,AB是⊙O的直徑,點C為⊙O上一點,OFBD于點F,交⊙O于點D,ACBD交于點G,點EOC的延長線上一點,且∠OEB=∠ACD

1)求證:BE是⊙O的切線;

2)求證:CD2CGCA;

3)若⊙O的半徑為BG的長為,求tanCAB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx與反比例函數(shù)yx0)的圖象相交于點D,點A為直線yx上一點,過點AACx軸于點C,交反比例函數(shù)yx0)的圖象于點B,連接BD

1)若點B的坐標為(8,2),則k   ,點D的坐標為   

2)若AB2BC,且△OAC的面積為18,求k的值及△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,、分別為邊、上兩點,將矩形沿折疊后,點落在邊上點處,連接,若四邊形為菱形,且,則四邊形

A.B.C.D.

查看答案和解析>>

同步練習冊答案