在如圖所示的平面直角坐標(biāo)系中,一座拱橋的橋孔形如拋物線,其對應(yīng)的二次函數(shù)為y=-
125
x2+4.
(1)當(dāng)水面從正常水位(即x軸所在直線)上升3m到達警戒水位時,求橋下水面的寬AB;
(2)如果水位以0.2m/h的速度持續(xù)上漲,那么到達警戒水位后,再過多長時間此橋孔將被淹沒?
精英家教網(wǎng)
分析:(1)根據(jù)二次函數(shù)的解析式,當(dāng)y=3時,解可得x的值,進而可得答案;
(2)由函數(shù)關(guān)系式可得頂點C的坐標(biāo),進而可得答案.
解答:解:(1)令y=3,
得-
1
25
x2+4=3,(1分)
x=±5.(3分)
所以水面寬AB=10m.(4分)

(2)由函數(shù)關(guān)系式y(tǒng)=-
1
25
x2+4,
可知頂點C的坐標(biāo)是(0,4)(6分)
所以河水從警戒水位到淹沒此橋孔共(4-3)÷0.2=5(h).
答:到達警戒水位后,再過5h此橋孔將被淹沒.
點評:本題考查點二次函數(shù)的實際應(yīng)用,根據(jù)題意,建立合適的數(shù)學(xué)模型,進而由函數(shù)的性質(zhì)可得答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、格點△ABC在如圖所示的平面直角坐標(biāo)系中,點B的坐標(biāo)為(1,1).
(1)畫出△ABC向左平移3的單位長度的圖形△A1B1C1,再以原點O為位似中心,將△A1B1C1放大到兩倍(即新圖與原圖的相似比為2),在所給的方格圖中畫出所得的圖形△A2B2C2
(2)點A1的坐標(biāo)為
(-1,3)
,在△A1B1C1內(nèi)有一點M(a,b),則點M在△A2B2C2中的對應(yīng)點N的坐標(biāo)為
(2a,2b)或(-2a,-2b)
.(橫縱坐標(biāo)可用含a、b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、(1)在如圖所示的平面直角坐標(biāo)系中,先畫出△OAB關(guān)于y軸對稱的圖形,再畫出△OAB繞點O旋轉(zhuǎn)180°后得到的圖形.
(2)先閱讀后作答:我們已經(jīng)知道,根據(jù)幾何圖形的面積關(guān)系可以說明完全平方公式,實際上還有一些等式也可以用這種方式加以說明,例如:
(2a+b)(a+b)=2a2+3ab+b2,就可以用圖1的面積關(guān)系來說明.
①根據(jù)圖2寫出一個等式
(a+2b)(2a+b)=2a2+5ab+2b2
;
②已知等式:(x+p)(x+q)=x2+(p+q)x+pq,請你畫出一個相應(yīng)的幾何圖形加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、在如圖所示的平面直角坐標(biāo)系中,描出點A(-2,1),B(3,1),C(-2,-2),D(3,-2)四個點.
(1)線段AB、CD有什么關(guān)系?并說明理由;
(2)順次連接A、B、C、D四點組成的圖形,你認(rèn)為它像什么?請寫出一個具體名稱?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、△ABC在如圖所示的平面直角坐標(biāo)系中.
(1)畫出△ABC關(guān)于原點對稱的△A1B1C1
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2
(3)請直接寫出△AB2A1的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

Rt△ABC在如圖所示的平面直角坐標(biāo)系中.
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1
(2)畫出將△ABC繞點O順時針旋轉(zhuǎn)90°得到的△A2B2C2
(3)寫出點B1、A2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案