【題目】已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),點(diǎn)F、G是邊AC的三等分點(diǎn),DF、EG的延長(zhǎng)線相交于點(diǎn)H,連接HA、HC.
(1)求證:四邊形FBGH是菱形;
(2)求證:四邊形ABCH是正方形.
【答案】(1)見解析 (2)見解析
【解析】
(1)由三角形中位線知識(shí)可得DF∥BG,GH∥BF,根據(jù)菱形的判定的判定可得四邊形FBGH是菱形;
(2)連結(jié)BH,交AC于點(diǎn)O,利用平行四邊形的對(duì)角線互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根據(jù)對(duì)角線互相垂直平分的平行四邊形得證四邊形ABCH是菱形,再根據(jù)一組鄰邊相等的菱形即可求解.
(1)∵點(diǎn)F、G是邊AC的三等分點(diǎn),
∴AF=FG=GC.
又∵點(diǎn)D是邊AB的中點(diǎn),
∴DH∥BG.
同理:EH∥BF.
∴四邊形FBGH是平行四邊形,
連結(jié)BH,交AC于點(diǎn)O,
∴OF=OG,
∴AO=CO,
∵AB=BC,
∴BH⊥FG,
∴四邊形FBGH是菱形;
(2)∵四邊形FBGH是平行四邊形,
∴BO=HO,FO=GO.
又∵AF=FG=GC,
∴AF+FO=GC+GO,即:AO=CO.
∴四邊形ABCH是平行四邊形.
∵AC⊥BH,AB=BC,
∴四邊形ABCH是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,DEF分別為△ABC邊ACABBC上的點(diǎn),∠A=∠1=∠C,DE=DF.下面的結(jié)論一定成立的是( )
A. AE=FC B. AE=DE C. AE+FC=AC D. AD+FC=AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a是最大的負(fù)整數(shù),b是-5的相反數(shù),c=,且a、b、c分別是點(diǎn)A、B、C在數(shù)軸上對(duì)應(yīng)的數(shù).若動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)B出發(fā)也沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒1個(gè)單位長(zhǎng)度.
(1)求a、b、c的值;
(2)P、Q同時(shí)出發(fā),求運(yùn)動(dòng)幾秒后,點(diǎn)P可以追上點(diǎn)Q?
(3)在(2)的條件下,P、Q出發(fā)的同時(shí),動(dòng)點(diǎn)M從點(diǎn)C出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),速度為每秒6個(gè)單位長(zhǎng)度,點(diǎn)M追上點(diǎn)Q后立即返回沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),追上后點(diǎn)M再運(yùn)動(dòng)幾秒,M到Q的距離等于M到P距離的兩倍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題:
(1)(-14)-(-15) (2) 23×(1-)×0.5.
(3)×(-5)(用簡(jiǎn)便方法計(jì)算) (4) (1-+)×(-48)
(5)(-10)÷×2 +(-4)3; (6)-12-(-)÷×[-2+(-3)2].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市水果批發(fā)部門欲將 A 市的一批水果運(yùn)往本市銷售,有火車和汽車兩種運(yùn)輸方式,運(yùn)輸過程中的損耗均為 200 元/ 時(shí).其它主要參考數(shù)據(jù)如下:
運(yùn)輸工具 | 途中平均速度(千米/ 時(shí)) | 運(yùn)費(fèi)(元/ 千米) | 裝卸費(fèi)用(元) |
火車 | 100 | 15 | 2000 |
汽車 | 80 | 20 | 900 |
運(yùn)輸過程中,火車因多次臨時(shí)停車,全程在路上耽誤 2 小時(shí) 45 分鐘,火車的總支出費(fèi)用與汽車的總支出費(fèi)用相同,請(qǐng)問某市與本地的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)如果點(diǎn)A表示的數(shù)-1,將點(diǎn)A向右移動(dòng)4個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是 ,A、B兩點(diǎn)間的距離是 .
(2)如果點(diǎn)A表示的數(shù)2,將點(diǎn)A向左移動(dòng)6個(gè)單位長(zhǎng)度,再向右移動(dòng)3個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是 ,A、B兩點(diǎn)間的距離是 .
(3)如果點(diǎn)A表示的數(shù)m,將點(diǎn)A向右移動(dòng)n個(gè)單位長(zhǎng)度,再向左移動(dòng)p個(gè)單位長(zhǎng)度,那么請(qǐng)你猜想終點(diǎn)B表示的數(shù)是 ,A、B兩點(diǎn)間的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,拋物線與x軸相交于點(diǎn)A,B,與y軸相交于點(diǎn)C. 已知A,C兩點(diǎn)的坐標(biāo)分別為A(-4,0), C(0,4).
(1)求拋物線的表達(dá)式;
(2)如果點(diǎn)P,Q在拋物線上(P點(diǎn)在對(duì)稱軸左邊),且PQ∥AO,PQ=2AO,求P,Q的坐標(biāo);
(3)動(dòng)點(diǎn)M在直線y=x+4上,且△ABC與△COM相似,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為△ABC邊AC的中點(diǎn),AD∥BC交BO的延長(zhǎng)線于點(diǎn)D,連接DC,DB平分∠ADC,作DE⊥BC,垂足為E.
(1)求證:四邊形ABCD為菱形;
(2)若BD=8,AC=6,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)一電瓶小客車接到任務(wù)從景區(qū)大門出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門.
(1)以景區(qū)大門為原點(diǎn),向東為正方向,以1個(gè)單位長(zhǎng)表示1千米,建立如圖所示的數(shù)軸,請(qǐng)?jiān)跀?shù)軸上表示出上述A、B、C三個(gè)景區(qū)的位置.
(2)A景區(qū)與C景區(qū)之間的距離是多少?
(3)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開始充足電而途中不充電的情況下完成此次任務(wù)?請(qǐng)計(jì)算說明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com