【題目】如圖二次函數(shù)的圖象經(jīng)過和兩點,且交軸于點.
(1)試確定、的值;
(2)過點作軸交拋物線于點點為此拋物線的頂點,試確定的形狀.
【答案】(1)b=-2 c=-3 (2)等腰直角三角形
【解析】
(1)把和分別代入中,得
到關(guān)于、的二元一次方程組,解得
(2)解:
(2)在函數(shù)y=x2+bx+c中a=1,b=-2,c=-3,因而="1" ,=-4
∴拋物線的頂點M(1,-4)
在函數(shù)y=x-2x-3中,令x=0,解得y=-3
∴C點的坐標是(0,-3),
把y=-3代入函數(shù)y=x2-2x-3,
解得x=2則D點的坐標是(2,-3),CD=2,CM==
同理DM=
∴△CDM是等腰直角三角形.
本題主要考查了待定系數(shù)法求函數(shù)解析式,利用公式法求函數(shù)的解析式,以及利用勾股定理的逆定理判斷三角形是直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè),.
①如圖2,當點在線段BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當點在直線BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是等腰直角三角形,AB=AC,AD是斜邊的中線,E、F分別是AB、AC邊上的點且DE⊥DF.
(1)求證:△AED≌△CFD;
(2)若BE=8,CF=6,求△DEF的面積;
(3)若AB=a,AE=x,請用含x,a的代數(shù)式表示△DEF的面積S.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE,延長BG交CD于F點,若CF=1,F(xiàn)D=2,則BC的長為【 】
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖AB=CD,AD=BC,過O點的直線交AD于E,交BC于F,圖中全等三角形有( 。
A. 4對 B. 5對 C. 6對 D. 7對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學等式,例如圖1可以得到,請解答下列問題:
(1)圖2所表示的數(shù)學等式為_____________________;
(2)利用(1)得到的結(jié)論,解決問題: 若,求的值;
(3)如圖3,將兩個邊長分別為a和b的正方形拼在一起,三點在同一直線上,連接,若兩正方形的邊長滿足求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知∠AOB和一條定長線段a,在∠AOB內(nèi)找一點P,使點P到OA,OB的距離都等于a,作法如下:
①在∠AOB內(nèi)作OB的垂線段NH,使NH=a,H為垂足;②過N作NM∥OB;③作∠AOB的平分線OP,與NM交于點P;④點P即為所求.其中③的依據(jù)是( )
A. 平行線之間的距離處處相等 B. 角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上
C. 角的平分線上的點到角的兩邊的距離相等 D. 線段垂直平分線上的點到線段兩端點的距離相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)與放水時間t(分)有如下關(guān)系:
放水時間(分) | 1 | 2 | 3 | 4 | … |
水池中水量(m3) | 38 | 36 | 34 | 32 | … |
下列結(jié)論中正確的是( 。
A. y隨t的增加而增大
B. 放水時間為15分鐘時,水池中水量為8m3
C. 每分鐘的放水量是2m3
D. y與t之間的關(guān)系式為y=40t
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com