【題目】如圖,在菱形ABCD中,點Ax軸上,點B的坐標為(8,2),點D的坐標為(02),則菱形ABCD面積為( 。

A. 8B. 16C. 24D. 32

【答案】B

【解析】

連接AC、BD交于點E,由菱形的性質得出ACBD,AECEAC,BEDEBD,由點B的坐標和點D的坐標得出OD2,求出DE4,AC4,即可解決問題;

解:連接AC、BD交于點E,如圖所示:

∵四邊形ABCD是菱形,

ACBDAECEAC,BEDEBD,

∵點B的坐標為(8,2),點D的坐標為(0,2),

OD2,BD8,

AEOD2DE4,

AC4,

AC4BD8,

S菱形ABCDBDAC16,

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】2016·長沙中考)若拋物線Lyax2xcab,c是常數(shù),abc0)與直線l都經(jīng)過y軸上的一點P,且拋物線L的頂點Q在直線l上,則稱此直線l與該拋物線L具有“一帶一路”關系,此時,直線l叫作拋物線L的“帶線”,拋物線L叫作直線l的“路線”.

1)若直線ymx1與拋物線yx22xn具有“一帶一路”關系,求m,n的值;

2)若某“路線”L的頂點在反比例函數(shù)y的圖象上,它的“帶線”l的解析式為y2x4,求此“路線”L的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的方程為x2+(m+2)x+2m﹣1=0.

(1)證明:方程有兩個不相等的實數(shù)根;

(2)是否存在實數(shù)m,使方程的兩個實數(shù)根互為相反數(shù)?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的三個頂點分別為A(1,2),B(1,3),C(3,1).若反比例函數(shù)y=在第一象限內的圖象與ABC有公共點,則k的取值范圍是(  )

A. 2≤k≤3B. 2≤k≤4C. 3≤k≤4D. 2≤k≤3.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了調查學生對社會主義核心價值觀的了解程度,我校在學生中做了一次抽樣調查,調查結果共分為四個等級:A:非常了解;B:比較了解;C:基本了解;D:不了解.根據(jù)調查統(tǒng)計結果,繪制了下面的三種統(tǒng)計圖表.

請結合統(tǒng)計圖表,回答下列問題.

1)本次參與調查的學生共有 人,m ,n ;

2)圖2所示的扇形統(tǒng)計圖中D部分扇形所對應的圓心角是 度;

3)請補全圖1所示的條形統(tǒng)計圖;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩地相距90km,甲騎摩托車由A地出發(fā),去B地辦事,甲出發(fā)的同時,乙騎自行車同時由B地出發(fā)沿著同一條道路前往A地,甲辦完事后原速返回A地,結果比乙早到0.5小時.甲、乙兩人離A地距離ykm)與時間xh)的函數(shù)關系圖像如圖所示.下列說法:①.a=3.5,b=4甲走的全路程是90km;③乙的平均速度是22.5km/h;.④甲在B地辦事停留了0.5小時.其中正確的說法有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解我縣中學生參加“科普知識”競賽成績的情況,隨機抽查了部分參賽學生的成績,整理并制作出如下的統(tǒng)計表和統(tǒng)計圖,如圖所示.請根據(jù)圖表信息解答下列問題.

組別

分數(shù)段(分)

頻數(shù)

百分率(%

A

60x70

30

10

B

70x80

90

n

C

80x90

m

40

D

90x100

60

20

1)樣本容量a   ,表中m   n   ;

2)補全頻數(shù)分布直方圖;

3)若成績在80分以上(包括80分)為“優(yōu)”等,請你估計我縣參加“科普知識”競賽的1.5萬名學生中成績是“優(yōu)”等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4).

(1)請在圖中,畫出ABC向左平移6個單位長度后得到的△A1B1C1;

(2)以點O為位似中心,將ABC縮小為原來的,得到△A2B2C2,請在圖中y軸右側,畫出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將兩塊完全相同的矩形紙片ABCD和矩形紙片AEFG按圖示方式放置(點A、D、E在同一直線上),連接ACAF、CF,已知AD3,DC4,則CF的長是( 。

A.5B.7C.5D.10

查看答案和解析>>

同步練習冊答案