【題目】用配方法解下列方程,其中應在方程左右兩邊同時加上4的是( 。
A. x2﹣2x=5 B. x2+4x=5 C. 2x2﹣4x=5 D. 4x2+4x=5
【答案】B
【解析】
配方法的一般步驟:
(1)把常數項移到等號的右邊;
(2)把二次項的系數化為1;
(3)等式兩邊同時加上一次項系數一半的平方.
A、因為本方程的一次項系數是-2,所以等式兩邊同時加上一次項系數一半的平方1;故本選項錯誤;
B、因為本方程的一次項系數是4,所以等式兩邊同時加上一次項系數一半的平方4;故本選項正確;
C、將該方程的二次項系數化為x 2 -2x= ,所以本方程的一次項系數是-2,所以等式兩邊同時加上一次項系數一半的平方1;故本選項錯誤;
D、將該方程的二次項系數化為x 2 +x= ,所以本方程的一次項系數是1,所以等式兩邊同時加上一次項系數一半的平方;故本選項錯誤;
故選B.
科目:初中數學 來源: 題型:
【題目】綠色出行是相對環(huán)保的出行方式,通過碳減排和碳中和實現環(huán)境資源的可持續(xù)利用和交通可持續(xù)發(fā)展.汽車工業(yè)的發(fā)展為人類帶來了快捷和方便,但同時,汽車的發(fā)展也引起了能源的消耗和空氣的污染.并且已成為全國各大城市的第一大污染源。實驗中學為了解全校學生的交通方式,責成該校七年級(1班)的4位同學對該校部分學生進行了隨機調查,按“騎自行車”、“乘公交車”、“步行”、“乘私家車”、“其他方式”設置選項.要求被調查的所有學生從中選一項,并將調查結果繪制成了條形統(tǒng)計圖1和扇形統(tǒng)計圖2.根據所提供的信息,解答下列問題.
(1)本次調查的人數共有___________人,扇形中步行的圓心角度度數為________.
(2)把條形統(tǒng)計圖補充完整.
(3)若該校共有學生3000人,則全校步行的學生大約有多少人數?
(4)根據調查結果對學生的環(huán)保出行提一條合理化的建議.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是小東設計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.已知:如圖1,直線l及直線l外一點A.
求作:直線AD,使得AD∥l.作法:如圖2,
①在直線l上任取一點B,連接AB;
②以點B為圓心,AB長為半徑畫弧,
交直線l于點C;
③分別以點A,C為圓心,AB長為半徑
畫弧,兩弧交于點D(不與點B重合);
④作直線AD.
所以直線AD就是所求作的直線.根據小東設計的尺規(guī)作圖過程,完成下面的證明.(說明:括號里填推理的依據)
證明:連接CD.
∵AD=CD=__________=__________,
∴四邊形ABCD是 ( ).
∴AD∥l( ).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,將矩形ABCD沿CE折疊后,使點D恰好落在對角線AC上的點F處.
(1)求EF的長;
(2)求梯形ABCE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AC⊥BC于C,BC=a,CA=b,AB=c,下列圖形中⊙O與△ABC的某兩條邊或三邊所在的直線相切,則⊙O的半徑為的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2016青海省西寧市)如圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰直角△ABC,使∠BAC=90°,設點B的橫坐標為x,點C的縱坐標為y,能表示y與x的函數關系的圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,一個點從數軸上的原點開始,先向右移動3個單位長度,再向左移動5個單位長度,可以看到終點表示的數是-2,已知點A,B是數軸上的點,請參照圖并思考,完成下列各題.
(1)如果點A表示數-3,將點A向右移動7個單位長度,那么終點B表示的數是_____,A,B兩點間的距離是_____;
(2)如果點A表示數3,將A點向左移動7個單位長度,再向右移動5個單位長度,那么終點表示的數是_____,A,B兩點間的距離為_____;
(3)如果點A表示數-4,將A點向右移動168個單位長度,再向左移動256個單位長度,那么終點B表示的數是_____,A、B兩點間的距離是_____;
(4)一般地,如果A點表示的數為m,將A點向右移動n個單位長度,再向左移動p個單位長度,那么請你猜想終點B表示什么數?A,B兩點間的距離為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AGF=∠ABC,∠ 1+∠ 2=180°.
(1)試判斷BF與DE的位置關系,并說明理由;
(2)若BF⊥AC,∠CDE=30°,求∠AFG的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com