【題目】如圖,AGF=∠ABC,∠ 1+∠ 2=180°

1)試判斷BFDE的位置關(guān)系,并說(shuō)明理由;

2)若BFAC,CDE=30°,求AFG的度數(shù).

【答案】1)BF∥DE,理由解析;(2)60°

【解析】

(1)先結(jié)合圖形猜想DE∥BF,由平行線的判定可知只需證∠2+∠3=180°,根據(jù)平行線的性質(zhì)結(jié)合已知條件即可求證;

2)根據(jù)補(bǔ)角的定義及已知∠ 1+ 2=180°,可求得∠1 =30°,再根據(jù)余角的定義即可求得答案.

1BFDE的位置關(guān)系是:BF∥DE.
理由:∵∠AGF=∠ABC,
∴BC∥GF(同位角相等,兩直線平行),
∴∠1=∠3;
又∵∠1+∠2=180°,
∴∠2+∠3=180°,
∴BF∥DE;

(2)∵BF∥DE,BF⊥AC,
∴DE⊥AC,
∵∠CDE=30°,∠CDE +∠2=180°

∵∠1+∠2=180°,
∴∠1=∠CDE=30°,
∴∠AFG=90°-30°=60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解下列方程,其中應(yīng)在方程左右兩邊同時(shí)加上4的是(  )

A. x22x5 B. x2+4x5 C. 2x24x5 D. 4x2+4x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠AOB90°,∠BOC30°,OM平分∠AOCON平分∠BOC

1)求∠MON的度數(shù);

2)如果∠AOBα,其他條件不變,求∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)A(2,0),B(0,﹣6)兩點(diǎn),

(1)求這個(gè)二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)的對(duì)稱軸與x軸交于點(diǎn)C,連接BA,BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,GBC邊上一點(diǎn),BEAGE,DFAGF,連接DE.

(1)求證:△ABE≌△DAF;

(2)若AF=1,四邊形ABED的面積為6,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形,邊上一點(diǎn),,點(diǎn)點(diǎn)出發(fā),以每秒個(gè)單位的速度沿著邊向終點(diǎn)運(yùn)動(dòng),連接,設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,則當(dāng)的值為__________時(shí),是以為腰的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三角形中,.將三角形繞著點(diǎn)旋轉(zhuǎn),使得點(diǎn)落在直線上的點(diǎn),點(diǎn)落在點(diǎn)

1)畫(huà)出旋轉(zhuǎn)后的三角形

2)求線段在旋轉(zhuǎn)的過(guò)程中所掃過(guò)的面積(保留).

3)如果在三角形中,(其中).其他條件不變,請(qǐng)你用含有的代數(shù)式,直接寫(xiě)出線段旋轉(zhuǎn)的過(guò)程中所掃過(guò)的面積(保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四邊形ABCD是正方形,GCD邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)GC、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.

(1)①猜想圖1中線段BG、線段DE的長(zhǎng)度關(guān)系及所在直線的位置關(guān)系,不必證明;

②將圖1中的正方形CEFG繞著點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)任意角度α,得到如圖2情形.請(qǐng)你通過(guò)觀察、測(cè)量等方法判斷①中得到的結(jié)論是否仍然成立,并證明你的判斷.

(2)將原題中正方形改為矩形(如圖3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)題①中得到的結(jié)論哪些成立,哪些不成立?若成立,以圖4為例簡(jiǎn)要說(shuō)明理由.

(3)在第(2)題圖4中,連接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘.在整個(gè)步行過(guò)程中,甲、乙兩人的距離(米)與甲出發(fā)的時(shí)間(分)之間的關(guān)系如圖所示,下列結(jié)論:①甲步行的速度為60米/分;②乙用16分鐘追上甲;③乙走完全程用了30分鐘;④乙到達(dá)終點(diǎn)時(shí)甲離終點(diǎn)還有360米.其中正確的結(jié)論有( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案