精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在中,,將繞點順時針旋轉一定角度后得到,連接,過點于點,若,且,則的長為__________

【答案】

【解析】

利用折疊的性質可證得ABC≌△A1BC1 , 由此可以推出AB=A1B,BC=B1C,∠ABC=A1BC1 , 再證明∠A1BA=C1BC,利用有兩組角對應相等的兩三角形相似,可證A1BA∽△C1BC,利用相似三角形的對應邊成比例,可得到ABBC之間的數量關系,利用銳角三角函數的定義及勾股定理,可以求出AB,BC的長,過C1C1QBCBC,AN于點Q,點P,設PC1=x,CQ=y,可建立關于x,y的方程組,解方程組求出x,y的值,即可求出AD的長.

根據題意,可得ABC≌△A1BC1

AB=A1B,BC=B1C,∠ABC=A1BC1

∵∠ABC=A1BA+ABC1 , A1BC1=C1BC+ABC1,

∴∠A1BA=C1BC

∴△A1BA∽△C1BC,

CC1= AA1,

AB= BC

sinBAC=sinBA1D= ,

RtABC中,設AB=5x,BC=3x,

AB2=AC2+BC2 (5x)2=162+(3x)2,

解方程(5x)2=162+(3x)2 , x1=4,x2=-4(),

BC=BC1=DC1=12, AC=A1C1=16

C1C1QBCBC,AN于點Q,點P,

PC1=x,CQ=y,

解得: ,

AD=12+4 12-4 ,

AD<BC

AD=12-4 .

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知,在△ABC中,∠BAC90°,∠ABC45°,點D為直線BC上一動點(點D不與點B、C重合),以AD為邊做正方形ADEF,連接CF

1)如圖,當點D在線段BC上時,直接寫出線段CF、BC、CD之間的數量關系   

2)如圖,當點D在線段BC的延長線上時,其他件不變,則(1)中的三條線段之間的數量關系還成立嗎?如成立,請予以證明,如不成立,請說明理由;

3)如圖,當點D在線段BC的反向延長線上時,且點AF分別在直線BC兩側,其他條件不變;若正方形ADEF的邊長為4,對角線AE、DF相交于點O,連接OC,請直接寫出OC的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABO的直徑,AB4,C的三等分點(更靠近A點),點PO上一個動點,取弦AP的中點D,則線段CD的最大值為(

A.2B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=﹣2x24x+6

(1)用配方法求出函數的頂點坐標;

(2)將該二次函數圖象向右平移幾個單位,可使平移后所得圖象經過坐標原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】最早對勾股定理進行證明的,是三國時期吳國的數學家趙爽,趙爽創(chuàng)制了一幅勾股圓方圖,用數形結合的方法,給出了勾股定理的詳細證明.在這幅勾股圓方圖中,以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的小正方形組成的.設直角三角形的兩直角邊長為,且滿足,若小正方形的面積為11,則大正方形的面積為(

A.15B.17C.30D.34

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】請閱讀下列材料:

問題:已知方程,求一元二次方程,使它的根分別是已知方程根的2倍.

解:設所求方程的根為,則,所以

代入已知方程,得

化簡,得

故所求方程為

這種利用方程根的代換求新方程的方法,我們稱為換根法

請用閱讀材料提供的換根法求新方程(要求:把所求方程化為一般形式).

1)已知方程,求一個一元二次方程,使它的根分別是已知方程根的相反數,則所求方程為:

2)已知關于的一元二次方程有兩個不等于零的實數根,求一個一元二次方程,使它的根分別是已知方程根的倒數;

3)已知關于的方程有兩個實數根,求一個方程,使它的根分別是已知方程根的平方.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數的圖象與x軸相交于A(3,0)B(1,0)兩點,與y軸相交于點C(03),點CD是二次函數圖象上的一對對稱點,一次函數的圖象過點BD

1D點坐標;

2)求二次函數的解析式;

3)根據圖象直接寫出使一次函數值小于二次函數值的x的取值范圍;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】電器專營店的經營利潤受地理位置、顧客消費能力等因素的影響,某品牌電腦專營店設有甲、乙兩家分店,均銷售A、BC、D四種款式的電腦,每種款式電腦的利潤如表1所示.現(xiàn)從甲、乙兩店每月售出的電腦中各隨機抽取所記錄的50臺電腦的款式,統(tǒng)計各種款式電腦的銷售數量,如表2所示.

1:四種款式電腦的利潤

電腦款式

A

B

C

D

利潤(元/臺)

160

200

240

320

2:甲、乙兩店電腦銷售情況

電腦款式

A

B

C

D

甲店銷售數量(臺)

20

15

10

5

乙店銷售數量(臺)8

8

10

14

18

試運用統(tǒng)計與概率知識,解決下列問題:

1)從甲店每月售出的電腦中隨機抽取一臺,其利潤不少于240元的概率為   ;

2)經市場調查發(fā)現(xiàn),甲、乙兩店每月電腦的總銷量相當.現(xiàn)由于資金限制,需對其中一家分店作出暫停營業(yè)的決定,若從每臺電腦的平均利潤的角度考慮,你認為應對哪家分店作出暫停營業(yè)的決定?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某同學在利用描點法畫二次函數yax2+bx+ca0)的圖象時,先取自變量x的一些值,計算出相應的函數值y,如下表所示:

x

0

1

2

3

4

y

3

0

1

0

3

接著,他在描點時發(fā)現(xiàn),表格中有一組數據計算錯誤,他計算錯誤的一組數據是( 。

A.B.C.D.

查看答案和解析>>

同步練習冊答案