【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如: .我們稱使得成立的一對數(shù), 為“相伴數(shù)對”,記為.
(1)若是“相伴數(shù)對”,求的值;
(2)寫出一個(gè)“相伴數(shù)對” ,其中且;
(3)若是“相伴數(shù)對”,求代數(shù)式的值.
【答案】(1); (2) (答案不唯一);(3)-2.
【解析】試題分析:
(1)把(1,b)代入中,可解出b;
(2)在中,把看作常數(shù),可解得,給取定一個(gè)值,就可得到對應(yīng)的的值;
(3)把(m,n)代入中,化簡可得: ,在把式子
化成用“”表達(dá)的形式就可求出其值了.
試題解析:
(1)∵(1,b)是“相伴數(shù)對”,
∴,即,解得;
(2)∵,
∴,
∴,
∴給任取一個(gè)值,可得對應(yīng)的的值,從而得到一對“相伴數(shù)對”,如當(dāng)時(shí), ,這樣可得“相伴數(shù)對”:().
(3)∵(m,n)是“相伴數(shù)對”,
∴,化簡可得: ,
又∵
=
=
=.
∴原式=0-2=-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達(dá)小彬家,繼續(xù)向東跑了1.5km到達(dá)小紅家,然后又向西跑了4.5km到達(dá)學(xué)校,最后又向東,跑回到自己家.
(1)以小明家為原點(diǎn),以向東為正方向,用1個(gè)單位長度表示1km,在圖中的數(shù)軸上,分別用點(diǎn)A表示出小彬家,用點(diǎn)B表示出小紅家,用點(diǎn)C表示出學(xué)校的位置;
(2)求小彬家與學(xué)校之間的距離;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,設(shè)△ABC的面積為S,周長為l.
(1)填表:
三邊a、b、c | ||
3、4、5 | 2 | |
5、12、13 | 4 | |
8、15、17 | 6 |
(2)如果,觀察上表猜想: (用含有m的代數(shù)式表示).
(3)證明(2)中的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=,D,E分別為AC,AB的中點(diǎn),BF∥CE交DE的延長線于點(diǎn)F.
(1)求證:四邊形ECBF是平行四邊形;
(2) 當(dāng)∠A=時(shí),求證:四邊形ECBF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,a、b、c、d、e、f均為有理數(shù),圖中各行、各列及兩條對角線上三個(gè)數(shù)的和都相等,則a+b+c+d+e+f的值是_____.
4 | ﹣1 | a |
b | 3 | c |
d | e | f |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組圖形一定相似的是( )
A. 兩個(gè)直角三角形 B. 兩個(gè)等邊三角形 C. 兩個(gè)菱形 D. 兩個(gè)矩形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com