【題目】如圖,在直角墻角AOBOAOB,且OA、OB長度不限)中,要砌20m長的墻,與直角墻角AOB圍成地面為矩形的儲(chǔ)倉,且地面矩形AOBC的面積為96m2

(1)求地面矩形AOBC的長;

(2)有規(guī)格為0.80×0.801.00×1.00(單位:m)的地板磚單價(jià)分別為55/塊和80/塊,若只選其中一種地板磚都恰好能鋪滿儲(chǔ)倉的矩形地面(不計(jì)縫隙),用哪一種規(guī)格的地板磚費(fèi)用較少?

【答案】(112米;(2)采用規(guī)格為1.00×1.00所需的費(fèi)用較少

【解析】試題分析:(1)根據(jù)題意表示出長方形的長,進(jìn)而利用長×=面積,求出即可;(2)分別計(jì)算出每一規(guī)格的地板磚所需的費(fèi)用,然后比較即可.

試題解析:(1)設(shè)這地面矩形的長是xm,則依題意得: x20﹣x=96

解得x1=12,x2=8(舍去),

答:這地面矩形的長是12米;

2)規(guī)格為0.80×0.80所需的費(fèi)用:96×0.80×0.80×55=8250(元).

規(guī)格為1.00×1.00所需的費(fèi)用:96×1.00×1.00×80=7680(元).

因?yàn)?/span>82507680,

所以采用規(guī)格為1.00×1.00所需的費(fèi)用較少.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①a為任意有理數(shù),a2+1總是正數(shù);②如果a+|a|=0,則a<0;③兩點(diǎn)確定一條直線;④若MA=MB,則點(diǎn)M是線段AB的中點(diǎn).其中正確的有(
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李明準(zhǔn)備進(jìn)行如下操作試驗(yàn),把一根長40 cm的鐵絲剪成兩段并把每段首尾相連各圍成一個(gè)正方形

(1)要使這兩個(gè)正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認(rèn)為這兩個(gè)正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說法正確嗎?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A2,1),B-1,3),C-3,2

1作出ABC關(guān)于x軸對稱的;

2)點(diǎn)的坐標(biāo)為 ,點(diǎn)的坐標(biāo)為 ;

3)點(diǎn)Paa-2)與點(diǎn)Q關(guān)y軸對稱,若PQ=8,則點(diǎn)P的坐標(biāo)為 ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種細(xì)菌的直徑是0.00000078米,將數(shù)據(jù)0.00000078用科學(xué)記數(shù)法表示為( 。

A. 7.8×107 B. 7.8×108 C. 0.78×107 D. 78×108

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖A在x軸負(fù)半軸上,B(0,-4),點(diǎn)E(-6,4)在射線BA上,

(1) 求證:點(diǎn)A為BE的中點(diǎn)

(2) 在y軸正半軸上有一點(diǎn)F, 使 ∠FEA=45°,求點(diǎn)F的坐標(biāo).

(3) 如圖,點(diǎn)M、N分別在x軸正半軸、y軸正半軸上,MN=NB=MA,點(diǎn)I為△MON的內(nèi)角平分線的交點(diǎn),AI、BI分別交y軸正半軸、x軸正半軸于P、Q兩點(diǎn), IH⊥ON于H, 記△POQ的周長為C△POQ.求證:C△POQ=2 HI.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下列各組線段的長為邊,能組成三角形的是( )

A.3cm,6cm,8cmB.3cm2cm,6cmC.5cm6cm,11cmD.2cm,7cm,4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題提出】

學(xué)習(xí)了三角形全等的判定方法(即“SSS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對兩個(gè)三角形滿足兩邊和其中一邊的對角對應(yīng)相等的情形進(jìn)行研究.

【初步思考】

我們不妨將問題用符號語言表示為:在△ABC△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角三種情況進(jìn)行探究.

【深入探究】

第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF

如圖,在△ABC△DEF,AC=DFBC=EF,∠B=∠E=90°,根據(jù)   ,可以知道Rt△ABC≌Rt△DEF

第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF

如圖,在△ABC△DEF,AC=DF,BC=EF∠B=∠E,且∠B∠E都是鈍角,請你證明:△ABC≌△DEF(提示:過點(diǎn)CCG⊥ABAB的延長線于G,過點(diǎn)FFH⊥DEDE的延長線于H).

第三種情況:當(dāng)∠B是銳角時(shí),△ABC△DEF不一定全等.

△ABC△DEF,AC=DFBC=EF,∠B=∠E,且∠B,∠E都是銳角,請你利用圖,在圖中用尺規(guī)作出△DEF,使△DEF△ABC不全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算中,正確的是(
A.x4x2=x8
B.x4÷x2=x6
C.(x42=x8
D.(3x)2=3x2

查看答案和解析>>

同步練習(xí)冊答案