【題目】閱讀下列解答過程:(1)如圖甲,AB∥CD,探索∠P與∠A,∠C之間的關(guān)系.
(2)如圖乙和圖丙,AB∥CD,請根據(jù)上述方法分別探索兩圖中∠P與∠A,∠C之間的關(guān)系.
【答案】(1)∠APC+∠A+∠C=360°.(2)∠C-∠A=∠APC
【解析】
(1)過點(diǎn)P作PE∥AB,即可證得 PE∥AB∥CD,根據(jù)平行線的性質(zhì)可得∠1+∠A=180°,∠2+∠C=180°,即可得∠1+∠A+∠2+∠C=360°,再由∠APC=∠1+∠2,即可得∠APC+∠A+∠C=360°;(2)圖乙,過P作PE∥AB,求出AB∥PE∥CD,根據(jù)平行線的性質(zhì)得出∠A=∠APE,∠C=∠CPE,即可求出答案;圖丙,過點(diǎn)P作PF∥AB,類比圖乙的證明方法解答即可.
(1)過點(diǎn)P作PE∥AB.
∵AB∥CD,
∴PE∥AB∥CD(平行于同一條直線的兩條直線互相平行).
∴∠1+∠A=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),
∠2+∠C=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).
∴∠1+∠A+∠2+∠C=360°.
又∵∠APC=∠1+∠2,
∴∠APC+∠A+∠C=360°.
(2)如圖乙,過點(diǎn)P作PE∥AB.
∵AB∥CD(已知),
∴PE∥AB∥CD(平行于同一直線的兩條直線平行).
∴∠A=∠EPA,∠EPC=∠C(兩直線平行,內(nèi)錯角相等).
∵∠APC=∠EPA+∠EPC,
∴∠APC=∠A+∠C(等量代換).
如圖丙,過點(diǎn)P作PF∥AB.
∴∠FPA=∠A(兩直線平行,內(nèi)錯角相等).
∵AB∥CD(已知),
∴PF∥CD(平行于同一直線的兩條直線平行).
∴∠FPC=∠C(兩直線平行,內(nèi)錯角相等).
∵∠FPC-∠FPA=∠APC,
∴∠C-∠A=∠APC(等量代換).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD各頂點(diǎn)分別為A(-2,2),B(-2,-1),C(3,-1),D(3,2),如果長方A'B'C'D'先向右平移1個單位長度,再向下平移2個單位長度,恰能與長方形ABCD完全重合.
(1)求長方形A'B'C'D'各頂點(diǎn)的坐標(biāo);
(2)如果線段AB與線段B'C'交于點(diǎn)E,線段AD與線段C'D'交于點(diǎn)F,求點(diǎn)E,F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平臺AB高為12m,在B處測得樓房CD頂部點(diǎn)D的仰角為45°,底部點(diǎn)C的俯角為30°,求樓房CD的高度(結(jié)果保留整數(shù),參考值: ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下兩小題后作出相應(yīng)的解答:
(1)“同位角相等,兩直線平行”,“兩直線平行,同位角相等”,這兩個命題的題設(shè)和結(jié)論在命題中的位置恰好對凋,我們把其中一命題叫做另一個命題的逆命題,請你寫出命題“角平分線上的點(diǎn)到角兩邊的距離相等“的逆命題,并指出逆命題的題設(shè)和結(jié)論;
(2)根據(jù)以下語句作出圖形,并寫出該命題的文字?jǐn)⑹?/span>.
已知:過直線AB上一點(diǎn)O任作射線OC,OM、ON分別平分∠AOC、∠BOC,則OM⊥ON.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,射線CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF。
(1)求∠EOB的度數(shù);
(2)若平行移動AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個比值;
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BC=a,AC=b,AB=c(b<c<a),BC的垂直平分線DG交∠BAC的角平分線AD于點(diǎn)D,DE⊥AB于E,DF⊥AC于F,則下列結(jié)論一定成立的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)3.3,-2,0,,-3.5.
(1) 比較這些數(shù)的大小,并用“<”號連接起來;
(2) 比較這些數(shù)的絕對值的大小,并將這些數(shù)的絕對值用“>”號連接起來;
(3) 比較這些數(shù)的相反數(shù)的大小,并將這些數(shù)的相反數(shù)用“<”號連接起來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB、BC、AC三邊的長分別為, , ,求這個三角形的面積.小明同學(xué)在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)△ABC的面積為 .
(2)若△DEF的三邊DE、EF、DF長分別為, , ,請?jiān)趫D2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并求出△DEF的面積為 .
(3)在△ABC中,AB=2,AC=4,BC=2,以AB為邊向△ABC外作△ABD(D與C在AB異側(cè)),使△ABD為等腰直角三角形,則線段CD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”長假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過小李家.
(1)若兩人同時出發(fā),小張車速為20千米,小李車速為15千米,經(jīng)過多少小時能相遇?
(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時二人相遇,則小張的車速應(yīng)為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com