【題目】如圖,直線y=ax+2與x軸、y軸分別相交于A,B兩點(diǎn),與雙曲線y=(x>0)相交于點(diǎn)P,PC⊥x軸于點(diǎn)C,且PC=4,點(diǎn)A的坐標(biāo)為(﹣4,0).
(1)求雙曲線的解析式;
(2)若點(diǎn)Q為雙曲線上點(diǎn)P右側(cè)的一點(diǎn),過(guò)點(diǎn)Q作QH⊥x軸于點(diǎn)H,當(dāng)以點(diǎn)Q,C,H為頂點(diǎn)的三角形與△AOB相似時(shí),求點(diǎn)Q的坐標(biāo).
【答案】(1)y=;(2)點(diǎn)Q的坐標(biāo)為(2+2,4﹣4)或(8,2)
【解析】
(1)把A坐標(biāo)代入直線解析式求出a的值,確定出直線解析式,把y=4代入直線解析式求出x的值,確定出P坐標(biāo),代入反比例解析式求出k的值,即可確定出雙曲線解析式;
(2)設(shè)Q(m,),分兩種情況考慮:當(dāng)△QCH∽△BAO時(shí);當(dāng)△QCH∽△ABO時(shí),由相似得比例求出m的值,即可得出Q坐標(biāo).
解:(1)把A(﹣4,0)代入y=ax+2,
得,﹣4a+2=0,解得a=,
故直線AB的解析式為y=x+2,
把y=4代入y=x+2,得x+2=4,
解得x=4,
∴點(diǎn)P(4,4).
把P(4,4)代入y=,得k=16,
故雙曲線的解析式為y=;
(2)把x=0代入y=x+2,得y=2,
∴點(diǎn)B的坐標(biāo)為(0,2),
∴OB=2,
∵A(﹣4,0),
∴OA=4,
設(shè)Q(m,),則CH=m﹣4,QH=,
由題意可知∠AOB=∠QHC=90°,
當(dāng)△AOB△QHC時(shí),
,即,
解得:m1=2+2,m22﹣2 (不合題意,舍去),
∴點(diǎn)Q的坐標(biāo)為(2+2,4﹣4),
當(dāng)△BOA△QHC時(shí),
,即,
解得m1=8,m2=﹣4(不合題意,舍去),
∴點(diǎn)Q的坐標(biāo)為(8,2).
綜上可知,點(diǎn)Q的坐標(biāo)為(2+2,4﹣4)或(8,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年4月是我國(guó)第32個(gè)愛(ài)國(guó)衛(wèi)生月.某校九年級(jí)通過(guò)網(wǎng)課舉行了主題為“防疫有我,愛(ài)衛(wèi)同行”的知識(shí)競(jìng)賽活動(dòng).為了解全年級(jí)500名學(xué)生此次競(jìng)賽成績(jī)(百分制)的情況,隨機(jī)抽取了部分參賽學(xué)生的成績(jī),整理并繪制出如下不完整的統(tǒng)計(jì)表(表1)和統(tǒng)計(jì)圖(如圖).請(qǐng)根據(jù)圖表信息解答以下問(wèn)題:
(1)本次調(diào)查一共隨機(jī)抽取了____個(gè)參賽學(xué)生的成績(jī);
(2)表1中a=__;
(3)所抽取的參賽學(xué)生的成績(jī)的中位數(shù)落在的“組別”是__;
(4)統(tǒng)計(jì)圖中B組所占的百分比是_______;
(5)請(qǐng)你估計(jì),該校九年級(jí)競(jìng)賽成績(jī)達(dá)到80分以上(含80分)的學(xué)生人數(shù).
表1 知識(shí)競(jìng)賽成績(jī)分組統(tǒng)計(jì)表
組別 | 分?jǐn)?shù)/分 | 頻數(shù) |
A | 60≤x<70 | a |
B | 70≤x<80 | 10 |
C | 80≤x<90 | 14 |
D | 90≤x<100 | 18 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】收發(fā)微信紅包已成為各類人群進(jìn)行交流聯(lián)系,增強(qiáng)感情的一部分,下面是甜甜和她的雙胞胎妹妹在六一兒童節(jié)期間的對(duì)話.
請(qǐng)問(wèn):(1)2015年到2017年甜甜和她妹妹在六一收到紅包的年增長(zhǎng)率是多少?
(2)2017年六一甜甜和她妹妹各收到了多少錢(qián)的微信紅包?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD中,點(diǎn)E是BC邊上的點(diǎn),BE=2,EC=1,AE=BC,DF⊥AE,垂足為F.則下列結(jié)論:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=.其中正確的結(jié)論是_____.(把正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為m的正方形,若AF=m,E為AB上一點(diǎn)且BE=3,把△AEF沿著EF折疊,得到△A'EF,若△BA'E為直角三角形,則m的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小敏從地出發(fā)向地行走,同時(shí)小聰從地出發(fā)向地行走,如圖,相交于點(diǎn)的兩條線段分別表示小敏、小聰離地的距離與已用時(shí)間之間的關(guān) 系,則_______時(shí),小敏、小聰兩人相距.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究
(1)如圖1,△ABC和△DEC均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)B,D,E在同一直線上,連接AD,BD.
①請(qǐng)?zhí)骄?/span>AD與BD之間的位置關(guān)系:________;
②若AC=BC=,DC=CE=,則線段AD的長(zhǎng)為________;
拓展延伸
(2)如圖2,△ABC和△DEC均為直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.將△DCE繞點(diǎn)C在平面內(nèi)順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角∠BCD為α(0°≤α<360°),作直線BD,連接AD,當(dāng)點(diǎn)B,D,E在同一直線上時(shí),畫(huà)出圖形,并求線段AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】咸寧市某中學(xué)為了解本校學(xué)生對(duì)新聞、體育、動(dòng)畫(huà)、娛樂(lè)四類電視節(jié)目的喜愛(ài)情況,隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下圖所示的兩幅不完整統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問(wèn)題:
⑴補(bǔ)全條形統(tǒng)計(jì)圖,“體育”對(duì)應(yīng)扇形的圓心角是 度;
⑵根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校名學(xué)生中喜愛(ài)“娛樂(lè)”的有 人;
⑶在此次問(wèn)卷調(diào)查中,甲、乙兩班分別有人喜愛(ài)新聞節(jié)目,若從這人中隨機(jī)抽取人去參加“新聞小記者”培訓(xùn),請(qǐng)用列表法或者畫(huà)樹(shù)狀圖的方法求所抽取的人來(lái)自不同班級(jí)的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豐富校園文化生活,提高學(xué)生的綜合素質(zhì),促進(jìn)中學(xué)生全面發(fā)展,學(xué)校開(kāi)展了多種社團(tuán)活動(dòng).小明喜歡的社團(tuán)有:合唱社團(tuán)、足球社團(tuán)、書(shū)法社團(tuán)、科技社團(tuán)(分別用字母A,B,C,D依次表示這四個(gè)社團(tuán)),并把這四個(gè)字母分別寫(xiě)在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.
(1)小明從中隨機(jī)抽取一張卡片是足球社團(tuán)B的概率是 .
(2)小明先從中隨機(jī)抽取一張卡片,記錄下卡片上的字母后不放回,再?gòu)氖S嗟目ㄆ须S機(jī)抽取一張卡片,記錄下卡片上的字母.請(qǐng)你用列表法或畫(huà)樹(shù)狀圖法求出小明兩次抽取的卡片中有一張是科技社團(tuán)D的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com