【題目】如圖,在Rt△ABC中,∠A=90°,點(diǎn)D,E分別在AC,BC上,且CD·BC=AC·CE,以E為圓心,DE長(zhǎng)為半徑作圓,⊙E經(jīng)過(guò)點(diǎn)B,與AB,BC分別交于點(diǎn)F,G.
(1)求證:AC是⊙E的切線;
(2)若AF=4,CG=5,
①求⊙E的半徑;
②若Rt△ABC的內(nèi)切圓圓心為I,則IE= .
【答案】(1)證明見(jiàn)解析;(2)①⊙E的半徑為20;②IE=
【解析】試題分析:(1)證明△CDE∽△CAB,得∠EDC=∠A=90°,所以AC是⊙E的切線;
(2)①如圖1,作輔助線,構(gòu)建矩形AHED,設(shè)⊙E的半徑為r,表示BH和EC的長(zhǎng),證明△BHE∽△EDC,
列比例式代入r可得結(jié)論;
②如圖2,作輔助線,構(gòu)建直角△IME,分別求IM和ME的值,利用勾股定理可求IE的長(zhǎng).
試題解析:(1)∵CDBC=ACCE,
∴,
∵∠DCE=∠ACB,
∴△CDE∽△CAB,
∴∠EDC=∠A=90°,
∴ED⊥AC,
∵點(diǎn)D在⊙E上,
∴AC是⊙E的切線;
(2)①如圖1,過(guò)E作EH⊥AB于H,
∴BH=FH,
∵∠A=∠AHE=∠ADE=90°,
∴四邊形AHED是矩形,
∴ED=AH,ED∥AB,
∴∠B=∠DEC,
設(shè)⊙E的半徑為r,則EB=ED=EG=r,
∴BH=FH=AH-AF=DE-AF=r-4,
EC=EG+CG=r+5,
在△BHE和△EDC中,
∵∠B=∠DEC,∠BHE=∠EDC=90°,
∴△BHE∽△EDC,
∴,即,
∴r=20,
∴⊙E的半徑為20;
②如圖2,過(guò)I作IM⊥BC于M,過(guò)I作IH⊥AB于H,
由①得:FH=BH=r-4=20-4=16,AB=AF+2BH=4+2×16=36,
BC=2r+5=2×20+5=45,
∴AC==27,
∵I是Rt△ABC的內(nèi)心,
∴IM==9,
∴AH=IM=9,
∴BH=BM=36-9=27,
∴EM=27-20=7,
在Rt△IME中,由勾股定理得:IE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016浙江省衢州市)已知二次函數(shù)的圖象,如圖所示
(1)根據(jù)方程的根與函數(shù)圖象之間的關(guān)系,將方程的根在圖上近似地表示出來(lái)(描點(diǎn)),并觀察圖象,寫(xiě)出方程的根(精確到0.1).
(2)在同一直角坐標(biāo)系中畫(huà)出一次函數(shù)的圖象,觀察圖象寫(xiě)出自變量x取值在什么范圍時(shí),一次函數(shù)的值小于二次函數(shù)的值.
(3)如圖,點(diǎn)P是坐標(biāo)平面上的一點(diǎn),并在網(wǎng)格的格點(diǎn)上,請(qǐng)選擇一種適當(dāng)?shù)钠揭品椒,使平移后二次函?shù)圖象的頂點(diǎn)落在P點(diǎn)上,寫(xiě)出平移后二次函數(shù)圖象的函數(shù)表達(dá)式,并判斷點(diǎn)P是否在函數(shù)的圖象上,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班為參加學(xué)校的大課間活動(dòng)比賽,準(zhǔn)備購(gòu)進(jìn)一批跳繩,已知2根A型跳繩和1根B型跳繩共需56元,1根A型跳繩和2根B型跳繩共需82元.
(1)求一根A型跳繩和一根B型跳繩的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購(gòu)買(mǎi)50根跳繩,如果A型跳繩的數(shù)量不多于B型跳繩數(shù)量的3倍,那么A型跳繩最多能買(mǎi)多少條?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知直線:交軸于,交軸于.
(1)直接寫(xiě)出的值為______.
(2)如圖2,為軸負(fù)半軸上一點(diǎn),過(guò)點(diǎn)的直線:經(jīng)過(guò)的中點(diǎn),點(diǎn)為軸上一動(dòng)點(diǎn),過(guò)作軸分別交直線、于、,且,求的值.
(3)如圖3,已知點(diǎn),點(diǎn)為直線右側(cè)一點(diǎn),且滿足,求點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(2,1),(0,1).
(1)求該二次函數(shù)的表達(dá)式及函數(shù)圖象的頂點(diǎn)坐標(biāo)和對(duì)稱(chēng)軸;
(2)若點(diǎn)P),Q)在拋物線上,試判斷與的大小.(寫(xiě)出判斷的理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七年級(jí)某班級(jí)為了促進(jìn)同學(xué)養(yǎng)成良好的學(xué)習(xí)習(xí)慣,每天都對(duì)同學(xué)進(jìn)行學(xué)規(guī)管理記分.如下是小李同學(xué)第8周學(xué)規(guī)得分(規(guī)定:加分為“+”,扣分為“﹣”).
(1)第8周小李學(xué)規(guī)得分總計(jì)是多少?
(2)根據(jù)班規(guī),一學(xué)期里班級(jí)還會(huì)將同學(xué)每周的學(xué)規(guī)得分進(jìn)行累加.已知小李同學(xué)第7周末學(xué)規(guī)累加分?jǐn)?shù)為98分,若他在第9周末學(xué)規(guī)累加分?jǐn)?shù)達(dá)到105分,則他第9周的學(xué)規(guī)得分總計(jì)是多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①所示,在△ABC中,∠A+∠B+∠C=___________度;
(2)如圖②所示,在五角星中,∠A+∠B+∠C+∠D+∠E=__________度;
(3)如圖③所示,在七角星中,∠A+∠B+∠C+∠D+∠E+∠F+∠G=_________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD,點(diǎn)P是對(duì)角線AC上一點(diǎn),連結(jié)BP,過(guò)P作PQ⊥BP,PQ交CD于Q,若AP=,CQ=3,則四邊形PBCQ的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)物學(xué)家通過(guò)大量的調(diào)查估計(jì)出,某種動(dòng)物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現(xiàn)年20歲的這種動(dòng)物活到25歲的概率為多少?現(xiàn)年25歲的這種動(dòng)物活到30歲的概率為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com