【題目】如圖,在Rt△ABC中,∠C=90°,O為AB邊上一點(diǎn),⊙O交AB于點(diǎn)E,F(xiàn)兩點(diǎn),BC切⊙O于點(diǎn)D,且CD=EF=1,
(1)求證:AC與⊙O相切;
(2)求圖中陰影部分的面積.
【答案】(1)見(jiàn)解析;(2)1﹣π.
【解析】試題分析:
(1)連接OD,過(guò)點(diǎn)O作OH⊥AC于點(diǎn)H,易證四邊形ODCH是矩形,由此可得OH=CD=EF=OE,從而可得AC是⊙O的切線;
(2)由(1)可知∠DOH=90°,OH=EF=1,由此根據(jù):S陰影=S正方形ODCH-S扇形ODH即可計(jì)算出陰影部分的面積.
試題解析:
(1)連接OD,過(guò)點(diǎn)O作OH⊥AC于點(diǎn)H,
∵BC是⊙O的切線,
∴OD⊥BC.
∵∠C=90°,
∴∠OHC=∠ODC=∠C=90°,
∴四邊形OHCD是矩形.
∵CD=EF,
∴OH=EF=OE.
∵OH⊥AC,
∴AC是⊙O的切線;
(2)由(1)可知,四邊形ODCH是正方形,
∴∠DOH=90°,OH=CD=EF=1,
∴S陰影=S正方形ODCH-S扇形ODH=1×1﹣=1﹣π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司銷售部有營(yíng)銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計(jì)了這15人某月的銷售如下:
每人銷售件數(shù) | 1800 | 510 | 250 | 210 | 150 | 120 |
人數(shù) | 1 | 1 | 3 | 5 | 3 | 2 |
(1)求這15位營(yíng)銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù).
(2)假設(shè)銷售部負(fù)責(zé)人把每位營(yíng)銷員的月銷售額定為320件,你認(rèn)為是否合理?為什么?如不合理,請(qǐng)你制定一個(gè)合理的銷售定額,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的面積為16cm2,△AEF為等腰直角三角形,∠E=90°,AE和BC交于點(diǎn)G,AF和CD交于點(diǎn)H,則△CGH的周長(zhǎng)( 。
A. 4cmB. 6cmC. 8cmD. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= (x>0)的圖象與邊長(zhǎng)是6的正方形OABC的兩邊AB,BC分別相交于M,N 兩點(diǎn),△OMN的面積為10.若動(dòng)點(diǎn)P在x軸上,則PM+PN的最小值是( )
A. 6 B. 10 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A是雙曲線與直線在第二象限的交點(diǎn),AB垂直軸于點(diǎn)B,且S△ABO=.
(1)求兩個(gè)函數(shù)的表達(dá)式;
(2)求直線與雙曲線的交點(diǎn)坐標(biāo)和△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉行研學(xué)旅行活動(dòng),車上準(zhǔn)備了7箱礦泉水,每箱的瓶數(shù)相同,到達(dá)目的地后,先從車上搬下3箱,發(fā)給每位同學(xué)1瓶礦泉水,有9位同學(xué)未領(lǐng)到.接著又從車上搬下4箱,繼續(xù)分發(fā),最后每位同學(xué)都有2瓶礦泉水,還剩下6瓶.問(wèn):有多少人參加此次研學(xué)旅行活動(dòng)?每箱礦泉水有多少瓶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.
(1)判斷OE與OF的大小關(guān)系?并說(shuō)明理由?
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)何處時(shí),四邊形AECF是矩形?并說(shuō)出你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的袋中裝有5個(gè)黃球、13個(gè)黑球和22個(gè)紅球,這些球除顏色外其他都相同.
(1)求從袋中摸出一個(gè)球是黃球的概率;
(2)求從袋中摸出一個(gè)球不是紅球的概率;
(3)現(xiàn)在從袋中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻后,若從袋中摸出一個(gè)球是黃球的概率為,則取出了多少個(gè)黑球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)平面直角坐標(biāo)系.
(1)請(qǐng)?jiān)趫D中描出以下6個(gè)點(diǎn):A(0,2)、B(4,2)、C(3,4)A′(-4,-4)、B'(0,-4)、C′(-1,-2)
(2)分別順次連接A、B、C和A′、B'、C',得到三角形ABC和三角形A′B′C′;
(3)觀察所畫(huà)的圖形,判斷三角形A′B′C′能否由三角形ABC平移得到,如果能,請(qǐng)說(shuō)出三角形A′B′C′是由三角形ABC怎樣平移得到的;如果不能,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com