【題目】如圖,拋物線的圖象經(jīng)過點(diǎn)C(0,-2),頂點(diǎn)D的坐標(biāo)為(1,),與軸交于A、B兩點(diǎn).
(1)求拋物線的解析式.
(2)連接AC,E為直線AC上一點(diǎn),當(dāng)△AOC∽△AEB時(shí),求點(diǎn)E的坐標(biāo)和的值.
(3)點(diǎn)F(0,)是軸上一動(dòng)點(diǎn),當(dāng)為何值時(shí),的值最小.并求出這個(gè)最小值.
(4)點(diǎn)C關(guān)于軸的對(duì)稱點(diǎn)為H,當(dāng)取最小值時(shí),在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△QHF是直角三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1);(2)E,;(3)當(dāng)時(shí),有最小值為;(4)存在,點(diǎn)Q的坐標(biāo)為或或或.
【解析】
(1)把C、D坐標(biāo)代入二次函數(shù)解析式,列方程組求出a、c的值即可;(2)根據(jù)拋物線解析式可求出A、B兩點(diǎn)坐標(biāo),即可求出AC、AB的長(zhǎng),設(shè)直線AC的解析式為:,把A、C坐標(biāo)代入可求出k、b的值,可得直線AC的解析式,根據(jù)△AOC∽△AEB可得,可求出△AEB的面積,進(jìn)而可求出,代入直線AC解析式可求出E點(diǎn)坐標(biāo),根據(jù)相似三角形的性質(zhì)即可求出的值;(3)連接BF,過點(diǎn)F作FG⊥AC于G,可得FG=,可得當(dāng)折線段BFG與BE重合時(shí),取得最小值,由(2)可知∠ABE=∠ACO,利用∠ABE的余弦和正切求出BE的長(zhǎng)和 的值即可;(4)可分如下三種情況:當(dāng)點(diǎn)Q為直角頂點(diǎn)時(shí)(如圖):由(3)可知F點(diǎn)的坐標(biāo),根據(jù)點(diǎn)C與點(diǎn)H關(guān)于軸對(duì)稱可求出點(diǎn)H坐標(biāo),設(shè)Q(1,),過點(diǎn)Q作QM軸于點(diǎn)M,可得Rt△QHM∽Rt△FQM,即可證明,即可求出m的值;當(dāng)點(diǎn)H為直角頂點(diǎn)時(shí),可得HQ//x軸,即可得出Q點(diǎn)坐標(biāo),當(dāng)點(diǎn)F為直角頂點(diǎn)時(shí),可得FQ//x軸,即可求出Q點(diǎn)坐標(biāo).
(1)∵的圖象經(jīng)過點(diǎn)C(0,-2),頂點(diǎn)D的坐標(biāo)為(1,),
∴,
解得:,
∴拋物線解析式為:.
(2)∵拋物線解析式為:.
∴當(dāng)y=0時(shí),=0,
解得:x1=-1,x2=3,
∴OA=1,OB=3,AB=4,
∵C(0,-2),
∴OC=2,
∴AC=,
設(shè)直線AC的解析式為:,則
解得:
∴直線AC的解析式為:
當(dāng)△AOC∽△AEB時(shí)(如圖)
∵
∴
∴,
即,
∴,
∴,
將代入,得,
∴E,
∵△AOC∽△AEB,
∴,
∴,
(3)如圖,連接BF,過點(diǎn)F作FG⊥AC于G
則FG=,
∴,
當(dāng)折線段BFG與BE重合時(shí),取得最小值,
由(2)可知∠ABE=∠ACO,
∴,
,
∴當(dāng)時(shí),有最小值為.
(4)可分如下三種情況:
①當(dāng)點(diǎn)Q為直角頂點(diǎn)時(shí)(如圖):
由(3)得F,
∵C(0,-2),
∴H(0,2),
∵點(diǎn)Q在拋物線的對(duì)稱軸上,
∴設(shè)Q(1,),
過點(diǎn)Q作QM軸于點(diǎn)M,
則Rt△QHM∽Rt△FQM,
∴,
∴,
即
∴Q(1,)或Q(1,),
②如圖,當(dāng)點(diǎn)H為直角頂點(diǎn)時(shí):
∵∠FHQ=90°,
∴HQ//x軸,
∵H(0,2),Q點(diǎn)在拋物線對(duì)稱軸上,
∴Q(1,2),
③如圖,當(dāng)點(diǎn)F為直角頂點(diǎn)時(shí),
∵∠HFQ=90°,
∴FQ//x軸,
∵F(0,),Q點(diǎn)在拋物線對(duì)稱軸上,
∴Q(1,).
綜上所述,點(diǎn)Q的坐標(biāo)為或 或 或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC為等邊三角形,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B在x軸上,點(diǎn)C在反比例函數(shù)的圖象上,則點(diǎn)B的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片中,,,將沿折疊,使點(diǎn)落在點(diǎn)處,交于點(diǎn),則的長(zhǎng)等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計(jì)共抽查了多少名學(xué)生?在扇形統(tǒng)計(jì)圖中,表示" "的扇形圓心角的度數(shù)是多少;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校共有1500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用 “微信”進(jìn)行溝通的學(xué)生大約有多少名?
(4)某天甲、乙兩名同學(xué)都想從“微信"、""、“電話"三種溝通方式中選一種方式與對(duì)方聯(lián)系,請(qǐng)用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是射線y═(x≥0)上一點(diǎn),過點(diǎn)A作AB⊥x軸于點(diǎn)B,以AB為邊在其右側(cè)作正方形ABCD,過點(diǎn)A的雙曲線y=交CD邊于點(diǎn)E,則的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解七年級(jí)學(xué)生體育測(cè)試情況,以七年級(jí)(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖,?/span>A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給的信息解答下列問題:
(說明:A級(jí):90分~100分;B級(jí):75分~89分;C級(jí):60分~74分;D級(jí):60分以下)
(1)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中D級(jí)所在的扇形的圓心角度數(shù)是 ;
(3)若該校七年級(jí)有600名學(xué)生,請(qǐng)用樣本估計(jì)體育測(cè)試中A級(jí)學(xué)生人數(shù)約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米
其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,E是正方形ABCD邊AB上的一點(diǎn),連接BD、DE,將∠BDE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點(diǎn)F和點(diǎn)G.
①線段DB和DG的數(shù)量關(guān)系是 ;
②寫出線段BE,BF和DB之間的數(shù)量關(guān)系.
(2)當(dāng)四邊形ABCD為菱形,∠ADC=60°,點(diǎn)E是菱形ABCD邊AB所在直線上的一點(diǎn),連接BD、DE,將∠BDE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點(diǎn)F和點(diǎn)G.
①如圖2,點(diǎn)E在線段AB上時(shí),請(qǐng)?zhí)骄烤段BE、BF和BD之間的數(shù)量關(guān)系,寫出結(jié)論并給出證明;
②如圖3,點(diǎn)E在線段AB的延長(zhǎng)線上時(shí),DE交射線BC于點(diǎn)M,若BE=1,AB=2,直接寫出線段GM的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】象棋是棋類益智游戲,中國(guó)象棋在中國(guó)有著三千多年的歷史,由于用具簡(jiǎn)單,趣味性強(qiáng),成為流行極為廣泛的棋藝活動(dòng).李凱和張萌利用象棋棋盤和棋子做游戲.李凱將四枚棋子反面朝上放在棋盤上,其中有兩個(gè)“兵”、一個(gè)“馬”、一個(gè)“士”,張萌隨機(jī)從這四枚棋子中摸一枚棋子,記下正漢字,然后再?gòu)氖O碌娜镀遄又须S機(jī)摸一枚.
(1)求張萌第一次摸到的棋子正面上的漢字是“兵”的概率;
(2)游戲規(guī)定:若張萌兩次摸到的棋子中有“士”,則張萌勝;否則,李凱勝.請(qǐng)你用樹狀圖或列表法求李凱勝的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com