【題目】在平面直角坐標系中,已知A(2,0),以OA為一邊在第四象限內(nèi)畫正方形OABC,D(m,0)為x軸上的一個動點,以BD為一邊畫正方形BDFE(點E在直線x=2的右側(cè))

(1)當m>2時(如圖1),試判斷線段AE與CD的數(shù)量關系,并說明理由.

(2)當AE=時,求點F的坐標.

(3)連接CF、OF,請直接寫出CF+OF的最小值.

【答案】(1)AE=CD(2)點F為(7,-3)或(-3,7)(3)2

【解析】分析:(1)由正方形OABC,可得BC=BA,ABC=90°,由等腰直角三角形BDE,可得BD=BE,DBE=90°,再根據(jù)∠CBD=ABE,即可得到CBD≌△ABE,進而得出CD=AE;

(2)當點D在點A右側(cè)時,根據(jù)CD=AE可求AD=3,再證明BAD≌△DHF,易得結(jié)論;當點D在點A左側(cè)時,方法同上;

(3)根據(jù)軸對稱的性質(zhì)易求CF+OF的最小值為.

詳解:(1)AE=CD.理由如下:

∵四邊形OABC、四邊形BDFE是正方形,

CBA=DBE=90°CB=AB,BD=BE

∴∠CBD=ABE

CBDABE中,

∴△CBD≌△ABE,

CD=AE.

(2)當點D在點A右側(cè)時如圖,

由(1)可知CD=AE=

,

AD=5-2=3

F點作FHx軸于點H,

易證得BAD≌△DHF,

DH=AB=2,F(xiàn)H=AD=3,

OH=OD+DH=5+2=7,

故點F(7,-3)

當點D在點A左側(cè)時如圖,

易證得CBD≌△ABE,

CD=AE=,

AD=5+2=7

F點作FGx軸于點G,

易證得BAD≌△DGF,

DG=AB=2,F(xiàn)G=AD=7.

OG=OD-DG=5-2=3,

故點F(-3,7)

綜上,點F為(7,-3)或(-3,7).

(3)

點睛: 解題的難點在于作輔助線構造全等三角形,運用全等三角形的對應邊相等得出結(jié)論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小軍同學在學校組織的社會調(diào)查活動中負責了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖)

(1)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;

月均用水量/t

頻數(shù)

百分比

2≤x3

2

4%

3≤x4

12

24%

4≤x5

5≤x6

10

20%

6≤x7

12%

7≤x8

3

6%

8≤x9

2

4%

 

(2)如果家庭月均用水量大于或等于4 t且小于7 t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上有A、BC、D四個整數(shù)點(即各點均表示整數(shù)),且2AB=BC=3CD,若A、D兩點表示的數(shù)分別為﹣56,且AC的中點為E,BD的中點為M,BC之間距點B的距離為BC的點N,則該數(shù)軸的原點為( 。

A. E B. F C. M D. N

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=67.5°,BC=4,BE⊥CA于E,CF⊥AB于F,D是BC的中點.以F為原點,F(xiàn)D所在直線為x軸構造平面直角坐標系,則點E的坐標是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD上一點,PQ垂直平分BE,分別交AD、BE、BC于點P、O、Q,連接BP、EQ

(1)求證:四邊形BPEQ是菱形;

(2)若AB=6,F(xiàn)為AB的中點,OF+OB=9,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個水池,用兩根水管注水,如果單開甲管,5小時注滿水池,如果單開乙管,10小時注滿水池.

(1)如果甲先注水2小時,然后由甲、乙共同注水,那么還需要多少時間才能把水池注滿?

(2)假設在水池下面安裝了排水管丙管,單開丙管6小時可以把一滿池水放完,如果三管同時開放,多少小時才能把一空池注滿水?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在數(shù)軸上A點表示數(shù)aB點示數(shù)b,C點表示數(shù)cb是最小的正整數(shù),且ab滿足 +(c-7)2=0.

(1) a= ,b= ,c=

(2) 若將數(shù)軸折疊,使得A點與C點重合,則點B與數(shù) 表示的點重合.

(3) A,BC開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)

(4) 請問:3BC-2AB的值是否隨著時間t的變化而改變? 若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在矩形ABCD中,AB=12,AC=20,兩條對角線相交于點O.以OB、OC為鄰邊作第1個平行四邊形OBB1C,對角線相交于點A1,再以A1B1、A1C為鄰邊作第2個平行四邊形A1B1C1C,對角線相交于點O1;再以O1B1、O1C1為鄰邊作第3個平行四邊形O1B1B2C1依此類推.

(1)求矩形ABCD的面積;

(2)求第1個平行四邊形OBB1C的面積是      

2個平行四邊形A1B1C1C      

3個平行四邊形O1B1B2C1的面積是      

(3)求第n個平行四邊形的面積是      

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】郵遞員騎摩托車從郵局出發(fā),先向南騎行2km到達A村,繼續(xù)向南騎行3km到達B 村,然后向北騎行9kmC村,最后回到郵局.

(1)以郵局為原點,以向北方向為正方向,用1個單位長度表示1km,請你在數(shù)軸上表示出A、B、C三個村莊的位置;

(2)C村離A村有多遠?

(3)若摩托車每100km耗油3升,這趟路共耗油多少升?

查看答案和解析>>

同步練習冊答案