【題目】數(shù)學(xué)活動(dòng)課上,老師準(zhǔn)備了若干個(gè)如圖1的三種紙片,A種紙片邊長(zhǎng)為a的正方形,B種紙片是邊長(zhǎng)為b的正方形,C種紙片長(zhǎng)為a、寬為b的長(zhǎng)方形.并用A種紙片一張,B種紙片張,C種紙片兩張拼成如圖2的大正方形.

(1)請(qǐng)用兩種不同的方法求圖2大正方形的面積.

方法1:   ;方法2:   

(2)觀察圖2,請(qǐng)你寫出下列三個(gè)代數(shù)式:(a+b)2,a2+b2,ab之間的等量關(guān)系.   

(3)根據(jù)(2)題中的等量關(guān)系,解決如下問(wèn)題:

①已知:a+b=5,a2+b2=11,求ab的值;

②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.

【答案】(1)(a+b)2,a2+b2+2ab; (2)(a+b)2=a2+2ab+b2;(3)ab=7 ; (2018﹣a)(a﹣2017)=﹣2.

【解析】

1)兩個(gè)小正方形的面積加上矩形的面積即可得出大正方形的面積或者直接運(yùn)用大正方形的邊長(zhǎng)求解即可;
(2)由面積關(guān)系容易得出結(jié)論;
(3)①根據(jù)(2)所得出的關(guān)系式,容易求出結(jié)果;
②先根據(jù)題意得出(2018﹣a)與(a﹣2017)的等量關(guān)系,即可得出結(jié)果.

(1)(a+b)2,a2+b2+2ab;

(2)(a+b)2=a2+2ab+b2;

(3) a+b=5,

(a+b)2=25,

a2+b2+2ab=25,

又∵a2+b2=11,

ab=7 ;

設(shè)2018﹣a=x,a﹣2017=y,則x+y=1,

(2018﹣a)2+(a﹣2017)2=5,

x2+y2=5,

(x+y)2=x2+2xy+y2

xy==﹣2,

即(2018﹣a)(a﹣2017)=﹣2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D是等邊△ABC內(nèi)一點(diǎn),DA=8,BD=10,CD=6,則∠ADC的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1.在菱形ABCD中,AB=2 ,tan∠ABC=2,∠BCD=α,點(diǎn)E從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著射線DA的方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒),將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α度,得到對(duì)應(yīng)線段CF,連接BD、EF,BD交EC、EF于點(diǎn)P、Q.

(1)求證:△ECF∽△BCD;
(2)當(dāng)t為何值時(shí),△ECF≌△BCD?
(3)當(dāng)t為何值時(shí),△EPQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,∠A=140°,D=80°.

(1)如圖1,若∠B=C,試求出∠C的度數(shù);

(2)如圖2,若∠ABC的角平分線BEDC于點(diǎn)E,且BEAD,試求出∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,射線AM平分∠BAC,AB=8,cos∠ACB= ,點(diǎn)P為射線AM上一點(diǎn),且PB=PC,則四邊形ABPC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)軸上不重合的兩點(diǎn)A,B,給出如下定義:若數(shù)軸上存在一點(diǎn)M,通過(guò)比較線段AMBM的長(zhǎng)度,將較短線段的長(zhǎng)度定義為點(diǎn)M到線段AB的“絕對(duì)距離”. 若線段AMBM的長(zhǎng)度相等,將線段AMBM的長(zhǎng)度定義為點(diǎn)M到線段AB的“絕對(duì)距離”.

(1)當(dāng)數(shù)軸上原點(diǎn)為O,點(diǎn)A表示的數(shù)為-1,點(diǎn)B表示的數(shù)為5時(shí).

①點(diǎn)O到線段AB的“絕對(duì)距離”為____;

②點(diǎn)M表示的數(shù)為,若點(diǎn)M到線段AB的“絕對(duì)距離”為3,則的值為______;

(2)在數(shù)軸上,點(diǎn)P表示的數(shù)為-6,點(diǎn)A表示的數(shù)為-3,點(diǎn)B表示的數(shù)為2. 點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度向正半軸方向移動(dòng)時(shí),點(diǎn)B同時(shí)以每秒1個(gè)單位長(zhǎng)度的速度向負(fù)半軸方向移動(dòng). 設(shè)移動(dòng)的時(shí)間為秒,當(dāng)點(diǎn)P到線段AB的“絕對(duì)距離”為2時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(﹣4,0),與y軸交于點(diǎn)C,PB⊥x軸于點(diǎn)B,點(diǎn)A與點(diǎn)B關(guān)于y軸對(duì)稱.

(1)求一次函數(shù),反比例函數(shù)的解析式;
(2)求證:點(diǎn)C為線段AP的中點(diǎn);
(3)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形?如果存在,說(shuō)明理由并求出點(diǎn)D的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:二次函數(shù)y=ax2+bx+c的圖象所示,下列結(jié)論中:①abc>0;②2a+b=0;③當(dāng)m≠1時(shí),a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 , 且x1≠x2 , 則x1+x2=2,正確的個(gè)數(shù)為(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩條筆直的街道AB,CD相交于點(diǎn)O,街道OE,OF分別平分∠AOC,BOD,比較∠1與∠2的關(guān)系,并說(shuō)明街道EOF是筆直的.

查看答案和解析>>

同步練習(xí)冊(cè)答案