【題目】如圖的⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點(diǎn)F,過點(diǎn)D、A分別作⊙O的切線交于點(diǎn)G,并與AB延長線交于點(diǎn)E.
(1)求證:∠1=∠2.
(2)已知:OF:OB=1:3,⊙O的半徑為3,求AG的長.
【答案】(1)證明見解析(2)6
【解析】試題分析:(1)連接OD,因?yàn)?/span>DE為⊙O的切線,所以OD⊥DE,又OC⊥OB,然后根據(jù)互余的關(guān)系可證∠1=∠2;(2)由(1)中∠1=∠2可得EF=ED,設(shè)DE=x,在Rt△ODE中,由勾股定理求得x =4,然后證Rt△EOD∽R(shí)t△EGA.可求出AG的長.
試題解析:(1)證明:如圖,連接OD,
∵DE為⊙O的切線,∴OD⊥DE.∴∠ODE=90°,即∠2 ∠ODC=90°,∵OC=OD,∴∠C=∠ODC.∴∠2 ∠C=90°.∵OC⊥OB,∴∠C ∠3=90°.∴∠2=∠3,∵∠1=∠3,∴∠1=∠2.
(2)∵OF:OB=1:3,⊙O的半徑為3,∴OF=1.∵∠1=∠2,∴EF=ED,在Rt△ODE中,OD=3,設(shè)DE=x,則EF=x,OE=1+x,所以,解得x =4.∴DE=4,OE=5.
∵AG為⊙O的切線,∴AG⊥AE.∴∠GAE=90°.∴∠ODE=∠GAE,∵∠OED=∠GEA,∴Rt△EOD∽Rt△EGA. 解得AG=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a>0)與x軸相交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C,對(duì)稱軸為直線x=1.
(1)求點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);
(2)聯(lián)結(jié)AC、BC,若△ABC的面積為6,求此拋物線的表達(dá)式;
(3)在第(2)小題的條件下,點(diǎn)Q為x軸正半軸上一點(diǎn),點(diǎn)G與點(diǎn)C,點(diǎn)F與點(diǎn)A關(guān)于點(diǎn)Q成中心對(duì)稱,當(dāng)△CGF為直角三角形時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎和小紅兩位同學(xué)在做投擲骰子(質(zhì)地均勻的正方體)實(shí)驗(yàn),他們共做了次實(shí)驗(yàn),實(shí)驗(yàn)的結(jié)果如下:
朝上的點(diǎn)數(shù) | ||||||
出現(xiàn)的次數(shù) |
(1)計(jì)算“點(diǎn)朝上”的頻率和“點(diǎn)朝上”的頻率.
(2)小穎說:“根據(jù)實(shí)驗(yàn)得出,出現(xiàn)點(diǎn)朝上的機(jī)會(huì)最大”;小紅說:“如投擲次,那么出現(xiàn) 點(diǎn)朝上的次數(shù)正好是次.”小穎和小紅的說法正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,分別表示使用一種白熾燈和一種節(jié)能燈的費(fèi)用(費(fèi)用燈的售價(jià)電費(fèi),單位:元)與照明時(shí)間(小時(shí))的函數(shù)圖象,假設(shè)兩種燈的使用壽命都是小時(shí),照明效果一樣.
(1)根據(jù)圖象分別求出,的函數(shù)表達(dá)式;
(2)小亮認(rèn)為節(jié)能燈一定比白熾燈省錢,你是如何想的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某市某種出租車收費(fèi)標(biāo)準(zhǔn)如下:乘車?yán)锍滩怀^3公里的一律收費(fèi)10元,乘車?yán)锍坛^3公里的,超過部分按每公里1.8元加收.
(1)如果有人乘該出租車行駛了8公里,那么他應(yīng)付多少車費(fèi)?
(2)如果該人行駛了x(x>3)公里,他應(yīng)付多少車費(fèi)?
(3)某游客乘出租車從A地到B地,付車費(fèi)22.6元,試估算從A地到B地大約多少公里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,對(duì)角線BD所在的直線上有兩點(diǎn)E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.
(1)求證:△ABE≌△ADF;
(2)試判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】指居民消費(fèi)價(jià)格指數(shù),反映居民家庭購買消費(fèi)商品及服務(wù)的價(jià)格水平的變動(dòng)情況. 的漲跌率在一定程度受到季節(jié)性因素和天氣因素的影響.根據(jù)北京市年與年漲跌率的統(tǒng)計(jì)圖中的信息,請(qǐng)判斷年~月份與年~月份,同月份比較漲跌率下降最多的月份是__________月;請(qǐng)根據(jù)圖中提供的信息,預(yù)估北京市年第四季度漲跌率變化趨勢(shì)是__________,你的預(yù)估理由是__________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】準(zhǔn)備兩張同樣大小的正方形紙片.
(1)取準(zhǔn)備好的一張正方形紙片,將它的四周各剪去一個(gè)同樣大小的正方形(如圖1),再折合成一個(gè)無蓋的長方體盒子.做成的長方體盒子的底面的邊長為6cm,容積為108cm3,那么原正方形紙片的邊長為多少?
(2)取準(zhǔn)備好的另一張一樣的正方形紙片,這張紙片恰好可做成圓柱形食品罐側(cè)面的包裝紙(如圖2,不計(jì)接口部分),求這個(gè)食品罐的底面圓的半徑?(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在邊BC上,聯(lián)結(jié)AD,∠ADB=∠CDE,DE交邊AC于點(diǎn)E,DE交BA延長線于點(diǎn)F,且AD2=DEDF.
(1)求證:△BFD∽△CAD;
(2)求證:BFDE=ABAD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com