年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列手機(jī)軟件圖標(biāo)中.既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形的是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
為解決停車(chē)難得問(wèn)題,在如圖一段長(zhǎng)56米的路段開(kāi)辟停車(chē)位,每個(gè)車(chē)位是長(zhǎng)5米、寬2.2米的矩形,矩形的邊與路的邊緣成45°角,那么這個(gè)路段最多可以劃出 個(gè)這樣的停車(chē)位()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
有兩輛四按1,2編號(hào),舟舟和嘉嘉兩人可任意選坐一輛車(chē).則兩人同坐2號(hào)車(chē)的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
類(lèi)比梯形的定義,我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形” .
(1)已知:如圖1,四邊形ABCD是“等對(duì)角四邊形”,∠A≠∠C,∠A=70°,
∠B=80°.求∠C,∠D的度數(shù).
(2)在探究“等對(duì)角四邊形”性質(zhì)時(shí):
①小紅畫(huà)了一個(gè)“等對(duì)角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立.請(qǐng)你證明此結(jié)論;
②由此小紅猜想:“對(duì)于任意‘等對(duì)角四邊形’,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等” .你認(rèn)為她的猜想正確嗎?若正確,請(qǐng)證明;若不正確,請(qǐng)舉出反例.
(3)已知:在“等對(duì)角四邊形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.
求對(duì)角線AC的長(zhǎng).
| |||
| |||
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
小明記錄了一星期每天的最高氣溫如下表,則這個(gè)星期每天最高氣溫的中位數(shù)是
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
最高氣溫(℃) | 22 | 24 | 23 | 25 | 24 | 22 | 21 |
A. 22℃ B. 23℃ C. 24℃ D. 25℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感。他驚喜地發(fā)現(xiàn):當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用“面積法”來(lái)證明。下面是小聰利用圖1證明勾股定理的過(guò)程:
將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:。
證明:連結(jié)DB,過(guò)點(diǎn)D作BC邊上的高DF,
則DF=EC=,
∵ ,
又∵,
∴ ,
∴
請(qǐng)參照上述證法,利用圖2完成下面的證明:
將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°。
求證:。
證明:連結(jié)
∵
又∵
∴
∴ 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com