【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=4,求EF的長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點B逆時針旋轉α得到△DBE,DE的延長線與AC相交于點F,連接DA、BF,∠ABC=α=60°,BF=AF.
(1)求證:DA∥BC;
(2)猜想線段DF、AF的數(shù)量關系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P和圖形W的“中點形”的定義如下:對于圖形W上的任意一點Q,連結PQ,取PQ的中點,由所以這些中點所組成的圖形,叫做點P和圖形W的“中點形”.
已知C(-2,2),D(1,2),E(1,0),F(-2,0).
(1)若點O和線段CD的“中點形”為圖形G,則在點,,中,在圖形G上的點是 ;
(2)已知點A(2,0),請通過畫圖說明點A和四邊形CDEF的“中點形”是否為四邊形?若是,寫出四邊形各頂點的坐標,若不是,說明理由;
(3)點B為直線y=2x上一點,記點B和四邊形CDEF的中點形為圖形M,若圖形M與四邊形CDEF有公共點,直接寫出點B的橫坐標b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代第一部自成體系的數(shù)學專著,代表了東方數(shù)學的最高成就.它的算法體系至今仍在推動著計算機的發(fā)展和應用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1尺=10寸)”,問這塊圓形木材的直徑是多少?”
如圖所示,請根據(jù)所學知識計算:圓形木材的直徑AC是( 。
A. 13寸 B. 20寸 C. 26寸 D. 28寸
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有四根長度分別為3,4,5,x(x為正整數(shù))的木棒,從中任取三根,首尾順次相接都能組成一個三角形則組成的三角形的周長( )
A.最小值是11B.最小值是12C.最大值是14D.最大值是15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題探究)
將三角形紙片沿折疊,使點A落在點處.
(1)如圖,當點A落在四邊形的邊上時,直接寫出與之間的數(shù)量關系;
(2)如圖,當點A落在四邊形的內部時,求證:;
(3)如圖,當點A落在四邊形的外部時,探索,,之間的數(shù)量關系,并加以證明;
(拓展延伸)
(4)如圖,若把四邊形紙片沿折疊,使點A、D落在四邊形的內部點、的位置,請你探索此時,,,之間的數(shù)量關系,寫出你發(fā)現(xiàn)的結論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小亮玩一個游戲:三張大小、質地都相同的卡片上分別標有數(shù)字2,3,4(背面完全相同),現(xiàn)將標有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和.若和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.
(1)請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率.
(2)你認為這個游戲規(guī)則對雙方公平嗎?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在菱形ABCD中,G是射線BC上的一動點(不與點B,C重合),連接AG,點E、F是AG上兩點,連接DE,BF,且知∠ABF=∠AGB,∠AED=∠ABC.
(1)若點G在邊BC上,如圖1,則:
①△ADE與△BAF______;(填“全等”或“不全等”或“不一定全等”)
②線段DE、BF、EF之間的數(shù)量關系是______;
(2)若點G在邊BC的延長線上,如圖2,那么上面(1)②探究的結論還成立嗎?如果成立,請給出證明;如果不成立,請說明這三條線段之間又怎樣的數(shù)量關系,并給出你的證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com