【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,DEAB,過點EEFDE,交BC的延長線于點F

1)求∠F的度數(shù);

2)若CD4,求EF的長.

【答案】(1)30°;(2)4

【解析】

根據(jù)平行線性質,得到∠EDC=∠B60°,再用三角形內角和定理即可求解.

EDC是等邊三角形,再根據(jù)直角三角形性質即可求解.

解:(1)∵△ABC是等邊三角形,

∴∠B60°

DEAB,

∴∠EDC=∠B60°,

EFDE,

∴∠DEF90°,

∴∠F90°﹣∠EDC30°;

2)∵∠ACB60°,∠EDC60°

∴△EDC是等邊三角形.

EDDC4,

∵∠DEF90°,∠F30°,

DF2DE8,

EFDE4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC繞點B逆時針旋轉α得到DBE,DE的延長線與AC相交于點F,連接DA、BF,ABC=α=60°,BF=AF

1求證:DABC;

2猜想線段DF、AF的數(shù)量關系,并證明你的猜想

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E,F分別是邊AB,CD的中點,求證:AFCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P和圖形W的“中點形”的定義如下:對于圖形W上的任意一點Q,連結PQ,取PQ的中點,由所以這些中點所組成的圖形,叫做點P和圖形W的“中點形”.

已知C(-22),D1,2),E10),F(-20).

1)若點O和線段CD的“中點形”為圖形G,則在點,中,在圖形G上的點是 ;

2)已知點A20),請通過畫圖說明點A和四邊形CDEF的“中點形”是否為四邊形?若是,寫出四邊形各頂點的坐標,若不是,說明理由;

3)點B為直線y=2x上一點,記點B和四邊形CDEF的中點形為圖形M,若圖形M與四邊形CDEF有公共點,直接寫出點B的橫坐標b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代第一部自成體系的數(shù)學專著,代表了東方數(shù)學的最高成就.它的算法體系至今仍在推動著計算機的發(fā)展和應用.書中記載:今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?譯為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1=10寸),問這塊圓形木材的直徑是多少?

如圖所示,請根據(jù)所學知識計算:圓形木材的直徑AC是( 。

A. 13 B. 20 C. 26 D. 28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有四根長度分別為3,4,5,xx為正整數(shù))的木棒,從中任取三根,首尾順次相接都能組成一個三角形則組成的三角形的周長(

A.最小值是11B.最小值是12C.最大值是14D.最大值是15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題探究)

將三角形紙片沿折疊,使點A落在點.

1)如圖,當點A落在四邊形的邊上時,直接寫出之間的數(shù)量關系;

2)如圖,當點A落在四邊形的內部時,求證:;

3)如圖,當點A落在四邊形的外部時,探索,,之間的數(shù)量關系,并加以證明;

(拓展延伸)

4)如圖,若把四邊形紙片沿折疊,使點A、D落在四邊形的內部點、的位置,請你探索此時,,之間的數(shù)量關系,寫出你發(fā)現(xiàn)的結論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮玩一個游戲:三張大小、質地都相同的卡片上分別標有數(shù)字2,3,4(背面完全相同),現(xiàn)將標有數(shù)字的一面朝下小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和若和為奇數(shù)則小明勝;若和為偶數(shù)則小亮勝

(1)請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率

(2)你認為這個游戲規(guī)則對雙方公平嗎?說說你的理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在菱形ABCD中,G是射線BC上的一動點(不與點B,C重合),連接AG,點E、FAG上兩點,連接DEBF,且知∠ABF=∠AGB∠AED=∠ABC

1)若點G在邊BC上,如圖1,則:

①△ADE△BAF______;(填“全等”或“不全等”或“不一定全等”)

線段DE、BF、EF之間的數(shù)量關系是______;

2)若點G在邊BC的延長線上,如圖2,那么上面(1探究的結論還成立嗎?如果成立,請給出證明;如果不成立,請說明這三條線段之間又怎樣的數(shù)量關系,并給出你的證明.

查看答案和解析>>

同步練習冊答案