【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx﹣5y軸于點A,交x軸于點B(﹣5,0)和點C(1,0),過點AADx軸交拋物線于點D.

(1)求此拋物線的表達式;

(2)點E是拋物線上一點,且點E關(guān)于x軸的對稱點在直線AD上,求△EAD的面積;

(3)若點P是直線AB下方的拋物線上一動點,當點P運動到某一位置時,△ABP的面積最大,求出此時點P的坐標和△ABP的最大面積.

【答案】(1)y=x2+4x﹣5;(2)20;(3)

【解析】

(1)根據(jù)題意可以求得a、b的值,從而可以求得拋物線的表達式;(2)根據(jù)題意可以求得AD的長和點EAD的距離,從而可以求得△EAD的面積;(3)根據(jù)題意可以求得直線AB的函數(shù)解析式,再根據(jù)題意可以求得△ABP的面積,然后根據(jù)二次函數(shù)的性質(zhì)即可解答本題.

1)∵拋物線y=ax2+bx﹣5y軸于點A,交x軸于點B(﹣5,0)和點C(1,0),

,得

∴此拋物線的表達式是y=x2+4x﹣5;

(2)∵拋物線y=x2+4x﹣5y軸于點A,

∴點A的坐標為(0,﹣5),

ADx軸,點E是拋物線上一點,且點E關(guān)于x軸的對稱點在直線AD上,

∴點E的縱坐標是5,點EAD的距離是10,

y=﹣5時,﹣5=x2+4x﹣5,得x=0x=﹣4,

∴點D的坐標為(﹣4,﹣5),

AD=4,

∴△EAD的面積是:=20;

(3)設(shè)點P的坐標為(p,p2+4p﹣5),如右圖所示,

設(shè)過點A(0,﹣5),點B(﹣5,0)的直線AB的函數(shù)解析式為y=mx+n,

,得

即直線AB的函數(shù)解析式為y=﹣x﹣5,

x=p時,y=﹣p﹣5,

OB=5,

∴△ABP的面積是:S=,

∵點P是直線AB下方的拋物線上一動點,

﹣5p0,

∴當p=﹣時,S取得最大值,此時S= ,點p的坐標是(-,﹣),

即點p的坐標是(-,﹣)時,△ABP的面積最大,此時△ABP的面積是

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點D、E,BC的延長線于⊙O的切線AF交于點F.

(1)求證:∠ABC=2∠CAF;

(2)若AC=2,CE:EB=1:4,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市為了節(jié)約用水,準備實行自來水階梯計費方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費為更好地決策,自來水公司在某街道隨機抽取了部分用戶的用水量數(shù)據(jù),按A,BC,DE五個區(qū)間進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制如下兩幅不完整的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:(說明:A03噸;B36噸;C69噸;D912噸;E1216噸,且每組數(shù)據(jù)區(qū)間包括右端的數(shù)但不包括左端的數(shù))

(1)這次隨機抽樣調(diào)查了_____用戶

(2)補全頻數(shù)分布直方圖,求扇形統(tǒng)計圖中B部分的圓心角的度數(shù);

(3)如果自來水公司將基本用水量定為每戶9噸,那么該街道1.8萬用戶中約有多少用戶的用水全部享受基本用水量的價格?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx2+bx3過點A1,0),直線AD交拋物線于點D,點D的橫坐標為﹣2,點P是線段AD上的動點.

1b   ,拋物線的頂點坐標為   ;

2)求直線AD的解析式;

3)過點P的直線垂直于x軸,交拋物線于點Q,連接AQ,DQ,當ADQ的面積等于ABD的面積的一半時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線分別交x軸、y軸于點B,C,正方形AOCD的頂點D在第二象限內(nèi),EBC中點,OFDE于點F,連結(jié)OE,動點PAO上從點A向終點O勻速運動,同時,動點Q在直線BC上從某點Q1向終點Q2勻速運動,它們同時到達終點.

1)求點B的坐標和OE的長;

2)設(shè)點Q2為(m,n),當tanEOF時,求點Q2的坐標;

3)根據(jù)(2)的條件,當點P運動到AO中點時,點Q恰好與點C重合.

①延長AD交直線BC于點Q3,當點Q在線段Q2Q3上時,設(shè)Q3Qs,APt,求s關(guān)于t的函數(shù)表達式.

②當PQ與△OEF的一邊平行時,求所有滿足條件的AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在等腰RtABC中,∠CAB=90°,PABC內(nèi)一點,將PABA逆時針旋轉(zhuǎn)90°DAC

1)試判斷PAD的形狀并說明理由;

2)連接PC,若∠APB=135°,PA=1,PB=3,求PC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司研發(fā)生產(chǎn)的560件新產(chǎn)品需要精加工后才能投放市場.現(xiàn)由甲、乙兩個工廠來加工生產(chǎn),已知甲工廠每天加工生產(chǎn)的新產(chǎn)品件數(shù)是乙工廠每天加工生產(chǎn)新產(chǎn)品件數(shù)的1.5倍,并且加工生產(chǎn)240件新產(chǎn)品甲工廠比乙工廠少用4天.

1)求甲、乙兩個工廠每天分別可加工生產(chǎn)多少件新產(chǎn)品?

2)若甲工廠每天的加工生產(chǎn)成本為2.8萬元,乙工廠每天的加工生產(chǎn)成本為2.4萬元要使這批新產(chǎn)品的加工生產(chǎn)總成本不超過60萬元,至少應(yīng)安排甲工廠加工生產(chǎn)多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組用高為1.2米的測角儀測量小樹AB的高度,如圖,在距AB一定距離的F處測得小樹頂部A的仰角為50°,沿BF方向行走3.5米到G處時,又測得小樹頂部A的仰角為27°,求小樹AB的高度.(參考數(shù)據(jù):sin27°=0.45cos27°=0.89,tan27°=0.5,sin50°=0.77cos50°=0.64,tan50°=1.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為更精準地關(guān)愛留守學生,某學校將留守學生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學校.某數(shù)學小組隨機調(diào)查了一個班級,發(fā)現(xiàn)該班留守學生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖.

1)該班共有   名留守學生,B類型留守學生所在扇形的圓心角的度數(shù)為   

2)將條形統(tǒng)計圖補充完整;

3)已知該校共有2400名學生,現(xiàn)學校打算對D類型的留守學生進行手拉手關(guān)愛活動,請你估計該校將有多少名留守學生在此關(guān)愛活動中受益?

查看答案和解析>>

同步練習冊答案