【題目】已知△ABC的一條邊BC的長為5,另兩邊AB、AC的長是關(guān)于的一元二次方程的兩個實數(shù)根。
(1)求證:無論為何值時,方程總有兩個不相等的實數(shù)根。
(2)為何值時,△ABC是以BC為斜邊的直角三角形。
(3)為何值時,△ABC是等腰三角形,并求△ABC的周長。
【答案】(1)見解析;(2)當(dāng)時,△ABC是以BC為斜邊的直角三角形;(3)或,周長為14或16.
【解析】
(1)根據(jù)方程的系數(shù)結(jié)合根的判別式即可得出△=1>0,由此即可得出方程有兩個不相等的實數(shù)根;
(2)利由一元二次方程根與系數(shù)的關(guān)系,得:,,根據(jù)BC=5利用勾股定理即可得出關(guān)于k的一元二次方程,解方程即可得出k的值;
(3)根據(jù)(1)結(jié)論可得出AB≠AC,由此可找出△ABC是等腰三角形分兩種情況,分AB=BC、AC=BC兩種情況考慮,根據(jù)兩邊相等找出關(guān)于k的一元一次方程,解方程求出k值,進(jìn)而可得出三角形的三邊長,再根據(jù)三角形的周長公式即可得出結(jié)論.
解:(1)∵
,
∴無論為何值時,方程總有兩個不相等的實數(shù)根;
(2)∵AB、AC的長是關(guān)于的一元二次方程的兩個實數(shù)根,
∴由一元二次方程根與系數(shù)的關(guān)系,得:,,
又∵△ABC是以BC為斜邊的直角三角形,由勾股定理,得:,
即,
∴,
整理,得:,解得:,,
∵AB、AC是△ABC的兩條邊,∴AB>0,AC>0,∴AB+AC>0
而當(dāng)時,AB+AC=2×(-5)+3=-7<0,∴不合題意,舍去,故,
∴當(dāng)時,△ABC是以BC為斜邊的直角三角形;
(3)由(1)的結(jié)論可知,,∴BC邊只能是腰,
∴AB、AC中必有一邊長為5,不妨設(shè)AB=5,
也就是說關(guān)于的一元二次方程必有一根為5,
∴,整理得:,解得:,,
當(dāng)時,原方程為,兩根為:,,這時有AB=5,AC=4,BC=5能構(gòu)成一個等腰三角形,其周長為14,
當(dāng)時,原方程為,兩根為:,,這時有AB=5,AC=6,BC=5能構(gòu)成一個等腰三角形,其周長為16.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形四邊形ABCD中,,,對角線AC、BD交于點O,點P為直線BD上的動點不與點B重合,連接AP,將線段AP繞點P逆時針旋轉(zhuǎn)得到線段PE,連接CE、BE.
問題發(fā)現(xiàn)
如圖1,當(dāng)點E在直線BD上時,線段BP與CE的數(shù)量關(guān)系為______;______
拓展探究
如圖2,當(dāng)點P在線段BO延長線上時,的結(jié)論是否成立?若成立,請加以證明;若不成立,請說明理由;
問題解決
當(dāng)時,請直接寫出線段AP的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=30,AD=48,BC=14,CD=40,∠ABD+∠BDC=90°,則ABCD的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,﹣3).
(1)求拋物線的解析式;
(2)如圖1,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.
(3)如圖2,將拋物線平移,使其頂點E與原點O重合,直線y=kx+2(k>0)與拋物線相交于點P、Q(點P在左邊),過點P作x軸平行線交拋物線于點H,當(dāng)k發(fā)生改變時,請說明直線QH過定點,并求定點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解全校學(xué)生上學(xué)的交通方式,該校九年級班的4名同學(xué)聯(lián)合設(shè)計了一份調(diào)查問卷,對該校部分學(xué)生進(jìn)行了隨機(jī)調(diào)查按騎自行車、乘公交車、步行、乘私家車、其他方式設(shè)置選項,要求被調(diào)查同學(xué)從中單選,并將調(diào)查結(jié)果繪制成條形統(tǒng)計圖1和扇形統(tǒng)計圖2,根據(jù)以上信息,解答下列問題:
本次接受調(diào)查的總?cè)藬?shù)是______人,并把條形統(tǒng)計圖補(bǔ)充完整;
在扇形統(tǒng)計圖中,“乘私家車的人數(shù)所占的百分比是______,“其他方式”所在扇形的圓心角度數(shù)是______度;
已知這4名同學(xué)中有2名女同學(xué),要從中選兩名同學(xué)匯報調(diào)查結(jié)果,請你用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.
(1)求證:四邊形ABCD是矩形;
(2)若DE=3,OE=9,求AB、AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2cm,∠DAB=60°.點P從A點出發(fā),以cm/s的速度,沿AC向C作勻速運動;與此同時,點Q也從A點出發(fā),以1cm/s的速度,沿射線AB作勻速運動.當(dāng)P運動到C點時,P、Q都停止運動,設(shè)點P運動的時間為t(s).
(1)對角線AC的長是 cm;
(2)當(dāng)P異于A、C時,請說明PQ∥BC;
(3)以P為圓心、PQ長為半徑作圓,請問:在整個運動過程中,t為怎樣的值時,⊙P與邊BC分別有1個公共點和2個公共點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 xOy 中,已知正比例函數(shù) y1=﹣2x 的圖象與反比例函數(shù) y2=的圖象交于 A(﹣1,a),B 兩點.
(1)求出反比例函數(shù)的解析式及點 B 的坐標(biāo);
(2)觀察圖象,請直接寫出滿足 y≤2 的取值范圍;
(3)點 P 是第四象限內(nèi)反比例函數(shù)的圖象上一點,若△POB 的面積為 1,請直接寫出點 P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,G為CD邊中點,連接AG并延長,分別交對角線BD于點F,交BC邊延長線于點E.若FG=2,則AE的長度為( )
A. 6B. 8
C. 10D. 12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com