【題目】將一塊含有45°的三角板ABC的頂點A放在⊙O上,且AC與⊙O相切于點A(如圖1),將△ABC從點A開始,繞著點A順時針旋轉,設旋轉角為α(0°<α<135°),旋轉后,AC、AB分別與⊙O交于點E,F,連接EF(如圖2).已知AC=8,⊙O的半徑為4.
(1)在旋轉過程中,有以下幾個量:①弦EF的長;②的長;③∠AFE的度數;④點O到EF的距離.其中不變的量是___________________(填序號);
(2)當α=________°時,BC與⊙O相切(直接寫出答案);
(3)當BC與⊙O相切時,求△AEF的面積.
【答案】(1)①②④;(2)90°;(3)16.
【解析】
試題(1)連接EO,FO,可知三角形EOF為等腰直角三角形,作OD垂直EF于D,由垂徑定理,勾股定理可得出結論;(2)因為AC=8,而⊙O的半徑為4.所以當BC與⊙O相切時,△ACB繞點A旋轉90°后AC恰為⊙O直徑,即旋轉角α為90度時BC與⊙O相切;(3)當BC與⊙O相切時,如圖:點C與點E重合,AC為⊙O直徑,利用三角形AEF是等腰直角三角形得出結果.
試題解析:(1)連接EO,FO,因為∠A=45,所以∠EOF=2∠A=90,因為EO=FO,所以三角形EOF為等腰直角三角形,作OD垂直EF于D,由垂徑定理得:OD垂直平分EF,三角形ODE和三角形ODF是兩個全等的等腰直角三角形,所以EF=OF,OD=OF,而半徑OF是一定的,所以弦EF的長不變,點O到EF的距離即OD不變,故①④正確,又因為半徑不變,圓心角∠EOF=90不變,所以的長不變,故②正確,而∠AFE的度數等于弧AE度數的一半,A點不變,E是旋轉中AC與⊙O交點,可變,故弧AE度數可變,所以∠AFE的度數可變,故③錯誤,所以不變的序號應是①②④;(2)因為圓的切線垂直于過切點的半徑,而∠ACB=90當BC與⊙O相切時,因為AC=8,而⊙O的半徑為4.所以△ACB繞點A旋轉90°后AC恰為⊙O直徑,即旋轉角α為90度時BC與⊙O相切;(3)如右圖,
當BC與⊙O相切時,依題意可知,△ACB旋轉90°后AC為⊙O直徑,且點C與點E重合,∵AC為⊙O直徑,∴∠AFE=90°.又∵∠BAC=45°,∴∠FCA=45°.∴∠BAC=∠FCA,∴AF=EF.∵AC=8,∴AF=EF=4,∴S△AEF=×(4)2=16.故△AEF的面積是16..
科目:初中數學 來源: 題型:
【題目】在解決數學問題時,我們常常從特殊入手,猜想結論,并嘗試發(fā)現解決問題的策略與方法.
(問題提出)
求證:如果一個定圓的內接四邊形對角線互相垂直,那么這個四邊形的對邊的平方和是一個定值.
(從特殊入手)
我們不妨設定圓O的半徑是R,⊙O的內接四邊形ABCD中,AC⊥BD.
請你在圖①中補全特殊殊位置時的圖形,并借助于所畫圖形探究問題的結論.
(問題解決)
已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內接四邊形, AC⊥BD.
求證: .
證明:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.
⑴請你補全這個輸水管道的圓形截面;
⑵若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a、b、c為常數,且a≠0)的圖象與x軸的交點的橫坐標分別為﹣1、3,則下列結論:①abc<0;②2a+b=0;③3a+2c>0;④對于任意x均有ax2﹣a+bx﹣b≥0,正確個數有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“童舒”童裝商場某種童裝進價為每件60元,當售價為每件100元時,每天可賣出120件:童裝的售價每上漲1元,則每天少賣2件.為了讓利于顧客,商場規(guī)定銷售這種重裝時利潤率不能超過90%,則當每件童裝的售價定為多少元時,商場銷售此種童裝時每天可獲得最大利潤?每天的最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c的圖象如圖所示,有以下結論:①abc>0;②a-b+c<0;③2a=b;④4a+2b+c>0;⑤若點(-2,y1)和(-,y2)在該圖象上,則y1>y2. 其中正確的結論個數是 ( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數y=(m2-m)x2+(m-1)x+2-2m.
(1)若這個函數是二次函數,求m的取值范圍.
(2)若這個函數是一次函數,求m的值.
(3)這個函數可能是正比例函數嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一張長10 dm,寬6 dm矩形紙板,將紙板四個角各剪去一個同樣的邊長為x dm的正方形,然后將四周突出部分折起,可制成一個無蓋方盒.
(1) 無蓋方盒盒底的長為______dm,寬為_____dm(用含x的式子表示)
(2) 若要制作一個底面積是32dm2的一個無蓋長方體紙盒,求剪去的正方形邊長x.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com