【題目】如圖1,已知直線y=2x+2與y軸、x軸分別交于A、B兩點,以B為直角頂點在第二象限作等腰Rt△ABC .
(1)求點C的坐標,并求出直線AC的關系式.
(2)如圖2,直線CB交y軸于E,在直線CB上取一點D,連接AD,若AD=AC,求證:BE=DE.
(3)如圖3,在(1)的條件下,直線AC交x軸于M,P(,k)是線段BC上一點,在線段BM上是否存在一點N,使△BPN的面積等于△BCM面積的?若存在,請求出點N的坐標;若不存在,請說明理由.
【答案】(1)C(﹣3,1),直線AC:y=x+2;(2)證明見解析;(3)N(﹣,0).
【解析】試題分析:(1)作CQ⊥x軸,垂足為Q,根據(jù)條件證明△ABO≌△BCQ,從而求出CQ=OB=1,可得C(﹣3,1),用待定系數(shù)法可求直線AC的解析式y=x+2;(2)作CH⊥x軸于H,DF⊥x軸于F,DG⊥y軸于G,證明△BCH≌△BDF,△BOE≌△DGE,可得BE=DE;(3)先求出直線BC的解析式,從而確定點P的坐標,假設存在點N使直線PN平分△BCM的面積,然后可求出BN的長,比較BM,BN的大小,判斷點N是否在線段BM上即可.
試題解析:解:(1)如圖1,作CQ⊥x軸,垂足為Q,
∴∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,
∴∠OAB=∠QBC,
又∵AB=BC,∠AOB=∠Q=90°,
∴△ABO≌△BCQ,
∵BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,
∴C(﹣3,1),
由A(0,2),C(﹣3,1)
可知,直線AC:y=x+2;
(2)如圖2,作CH⊥x軸于H,DF⊥x軸于F,DG⊥y軸于G,
∵AC=AD,AB⊥CB,
∵BC=BD,
∴△BCH≌△BDF,
∴BF=BH=2,
∴OF=OB=1,
∵DG=OB,
∴△BOE≌△DGE,
∴BE=DE;
(3)如圖3,直線BC:y=﹣x﹣,P(,k)是線段BC上一點,
∴P(﹣,),由y=x+2知M(﹣6,0),
∴BM=5,則S△BCM=.
假設存在點N使直線PN平分△BCM的面積,
則BN·=×,
∴BN=,ON=,
∴BN<BM,
∴點N在線段BM上,
∴N(﹣,0).
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃利用一片空地建一個學生自行車車棚,其中一面靠墻,這堵墻的長度為12米.計劃建造車棚的面積為80平方米,已知現(xiàn)有的木板材料可使新建板墻的總長為26米.
(1)為了方便學生出行,學校決定在與墻平行的一面開一個2米寬的門,那么這個車棚的長和寬分別應為多少米?
(2)如圖,為了方便學生取車,施工單位決定在車棚內(nèi)修建幾條等寬的小路,使得停放自行車的面積為54平方米,那么小路的寬度是多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有下列命題:①對頂角相等;②若a∥b,b∥c,則a∥c;③在同一平面內(nèi),若a⊥b,b⊥c,則a∥c;④ac=bc,則a=b.其中正確的有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知E是ABCD中BC邊的中點,連接AE并延長AE交DC的延長線于點F,連接AC、BF,若EF=EC,試判斷四邊形ABFC是什么四邊形,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB ,在AB,CD之間取一點E,連接EA,EC,試探索 AEC與 EAB, ECD之間的關系若點E取在AC上如圖,則 AEC,由此可得 AEC EAB ECD或 AEC EAB ECD如果點E取在AC的兩側如圖,結論會是什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】寧波位于東南沿海,中國大陸海岸線中段,陸域總面積約為9816平方公里.其中9816用科學記數(shù)法表示為( )
A.918.6×10B.91.86×102C.9.186×103D.0.9186×104
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=kx+b與拋物線y=ax2(a>0)相交于A、B兩點(點A在點B的左側),與y軸正半軸相交于點C,過點A作AD⊥x軸,垂足為D.
(1)若∠AOB=60°,AB∥x軸,AB=2,求a的值;
(2)若∠AOB=90°,點A的橫坐標為﹣4,AC=4BC,求點B的坐標;
(3)延長AD、BO相交于點E,求證:DE=CO.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某鎮(zhèn)正在建造的文化廣場工地上,有兩種鋪設廣場地面的材料,一種是長為 cm,寬為cm的長方形板材(如圖),另一種是邊長為cm的正方形地磚(如圖②)
(1)用幾塊如圖②所示的正方形地磚能拼出一個新的正方形?并寫出新正方形的面積
(寫出一個符合條件的答案即可);
(2)我們在分析解決某些數(shù)學問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問
題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一,所謂“作差
法”:就是通過作差、變形,并利用差的符號來確定它們的大小,即要比較代數(shù)式M、
N的大小,只要作出它們的差,若,則;若,則
;若,則.
請你用“作差法”解決以下問題:用如圖①所示的四塊長方形板材鋪成如圖③的大正方形或如圖④的大長方形,中間分別空出一個小正方形和小長方形(圖中陰影部分);
① 請用含、的代數(shù)式分別表示圖③和圖④中陰影部分的面積;
② 試比較圖③和圖④中陰影部分的面積哪個大?大多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com