【題目】下列說法正確的是( )
A.平移不改變圖形的形狀和大小,而旋轉(zhuǎn)則改變圖形的形狀和大小
B.在成中心對稱的兩個圖形中,連結(jié)對稱點的線段都被對稱中心平分
C.在平面直角坐標(biāo)系中,一點向右平移2個單位,縱坐標(biāo)加2
D.在平移和旋轉(zhuǎn)圖形中,對應(yīng)角相等,對應(yīng)線段相等且平行

【答案】B
【解析】解:A、平移不改變圖形的形狀和大小,旋轉(zhuǎn)也不改變圖形的形狀和大小,故此選項錯誤;
B、在成中心對稱的兩個圖形中,連結(jié)對稱點的線段都被對稱中心平分,此選項正確;
C、在平面直角坐標(biāo)系中,一點向右平移2個單位,橫坐標(biāo)加2,故此選項錯誤;
D、在平移中,對應(yīng)角相等,對應(yīng)線段相等且平行,旋轉(zhuǎn)則對應(yīng)線段有可能不平行,故此選項錯誤.
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c與一直線相交于A(1,0),C(2,3)兩點,與y軸交于點N,其頂點為D.

(1)拋物線及直線AC的函數(shù)關(guān)系式;

(2)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點E作EFBD交拋物線于點F,以B,D,E,F(xiàn)為頂點的四邊形能否為平行四邊形?若能,求點E的坐標(biāo);若不能,請說明理由;

(3)若P是拋物線上位于直線AC上方的一個動點,求APC的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD內(nèi)部有1000個點,以頂點A、B、C、D、和這1000個點能把原四邊形分割成n個 沒有重疊的小三角形,則個數(shù)n的值為( )

A. 2002 B. 2001 C. 2000 D. 1001

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(0,1)、D(-,0),作直線AD以線段AD為邊向上作正方形ABCD.

(1)填空:點B的坐標(biāo)為________,點C的坐標(biāo)為_________

(2)若正方形以每秒2個單位長度的速度沿射線DA向上平移,直至正方形的頂點C落在y軸上時停止運動.在運動過程中,設(shè)正方形落在y軸右側(cè)部分的面積為S,求S關(guān)于平移時間t(秒)的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)公司組織初三505名學(xué)生外出社會綜合實踐活動,現(xiàn)打算租用A、B 兩種型號的汽車,并且每輛車上都安排1名導(dǎo)游,如果租用這兩種型號的汽車各5輛,則剛好坐滿;如果全部租用B型汽車,則需13輛汽車,且其中一輛會有2個空位,其余汽車都坐滿.(注:同種型號的汽車乘客座位數(shù)相同)

(1)A、B兩種型號的汽車分別有多少個乘客座位?

(2)綜合考慮多種因素,最后該公司決定租用9輛汽車,問最多安排幾輛B型汽車?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,EBC上一點,以CE為直徑作O,ABO相切于點D,連接CD,若BEOE=2.

(1)求證:A=2DCB;

(2)求圖中陰影部分的面積(結(jié)果保留和根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若當(dāng)x=1時,代數(shù)式ax3+bx+7的值為-4,則當(dāng)x=-1時,代數(shù)式ax3+bx+7值為( )

A. -4 B. 4 C. 10 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2+8x+20與x軸公共點的的個數(shù)情況是有_____個公共點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推行公立醫(yī)院改革,某醫(yī)院將某藥品經(jīng)過兩次降價,每瓶零售價由168元降為128元.已知兩次降價的百分率相同,每次降價的百分率為x,根據(jù)題意列方程得( )

A. 168(1+x)2=128 B. 168(1-x)2=128 C. 168(1-2x)=128 D. 168(1-x2)=128

查看答案和解析>>

同步練習(xí)冊答案