已知:BE⊥CD于E,BE=DE,BC=DA,
(1)求證:△BEC≌△DEA;
(2)求證:BC⊥FD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
閱讀理解:
學(xué)習(xí)了三角形全等的判定方法:“SAS”,“ASA”,“AAS”,“SSS”和直角三角形全等的判定方法“HL”后,我們繼續(xù)對(duì)“兩個(gè)三角形滿(mǎn)足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”即“SSA”的情形進(jìn)行研究.
我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠A=∠D.
初步探究:
如圖1,已知AC=DF, ∠A=∠D,過(guò)C作CH⊥射線AM于點(diǎn)H,對(duì)△ABC 的CB邊進(jìn)行分類(lèi),可分為“CB<CH,CB=CH,CH<CB<CA,”三種情況進(jìn)行探究.
深入探究:
第一種情況,當(dāng)BC<CH時(shí),不能構(gòu)成△ABC和△DEF.
第二種情況,(1)如圖2,當(dāng)BC=CH時(shí),在△ABC和△DEF中,AC=DF,BC=EF,∠A=∠D,根據(jù) ,可以知道Rt△ABC≌Rt△DEF.
第三種情況,(2)當(dāng)CH<BC<CA時(shí),△ABC和△DEF不一定全等.請(qǐng)你用尺規(guī)在圖1的兩個(gè)圖形中分別補(bǔ)全△ABC和△DEF,使△DEF和△ABC不全等(表明字母,不寫(xiě)作法,保留作圖痕跡).
(3)從上述三種情況發(fā)現(xiàn),只有當(dāng)BC=CH時(shí),才一定能使△ABC≌△DEF. 除了上述三種情況外,BC邊還可以滿(mǎn)足什么條件,也一定能使△ABC≌△DEF?寫(xiě)出結(jié)論,并利用備用圖證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列條件中,不能判斷△ABC為直角三角形的是()
A. a2=1,b2=2,c2=3 B. a:b:c=3:4:5
C. ∠A+∠B=∠C D. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
等腰三角形的一個(gè)角是80°,則它頂角的度數(shù)是()
A. 80° B. 80°或20° C. 80°或50° D. 20°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在直線l上依次擺放著七個(gè)正方形(如圖所示).已知斜放置的三個(gè)正方形的面積分別是1,2,3,正放置的四個(gè)正方形的面積依次是S1,S2,S3,S4,則S1+S2+S3+S4=.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com