如圖(1),四邊形紙片ABCD中,∠B=120°,∠D=50°.如圖(2),將紙片右下角沿直線PR向內(nèi)翻折得到一△PCR.若CP∥AB,
RC∥AD,則∠C 為( 。
分析:根據(jù)折疊前后圖形全等和平行線,先求出∠CPR和∠CRP,再根據(jù)三角形內(nèi)角和定理即可求出∠C.
解答:解:因為折疊前后兩個圖形全等,故∠CPR=
1
2
∠B=
1
2
×120°=60°,
∠CRP=
1
2
∠D=
1
2
×50°=25°;
∴∠C=180°-25°-60°=95°;
故選B.
點評:本題主要考查翻折變換的知識,解答本題的關鍵是熟練掌握解題過程中應注意折疊前后的對應關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、如圖所示,將方格紙中的四邊形ABCD繞著O旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將一張矩形紙ABCD按圖示折疊:
精英家教網(wǎng)
(1)求證:四邊形EFGB是平行四邊形;
(2)若BC=11cm,AB=4cm,要使四邊形EFGB為菱形,則剪去的△ABE的邊AE應為多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中每個小方格都是邊長為1的正方形,我們把以格點連線為邊的多邊形稱為“格點多邊形”.如圖(一)中四邊形ABCD就是一個“格點四邊形”.
(1)作出四邊形ABCD關于直線BD對稱的四邊形A′B′C′D′;
(2)求圖(一)中四邊形ABCD的面積;
(3)在圖(二)方格紙中畫一個格點三角形EFG,使△EFG的面積等于四邊形ABCD的面積且△EFG為軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

數(shù)學學習總是如數(shù)學知識自身的生長歷史一樣,往往起源于猜測中的發(fā)現(xiàn),我們所發(fā)現(xiàn)的不一定對,但是當利用我們已有的知識作為推理的前提論證之后,當所發(fā)現(xiàn)的在邏輯上沒有矛盾之后,就可以作為新的推理的前提,數(shù)學中稱之為定理.
(1)嘗試證明:
等腰三角形的探索中借助折紙發(fā)現(xiàn):直角三角形斜邊上的中線等于斜邊的一半.但是當時并未說明這個結論的合理.現(xiàn)在我們學些了矩形的判定和性質(zhì)之后,就可以解決這個問題了.如圖1若在Rt△ABC中CD是斜邊AB的中線,則CD=
12
AB
,你能用矩形的性質(zhì)說明這個結論嗎?請說明.
(2)遷移運用:利用上述結論解決下列問題:
①如圖2所示,四邊形ABCD中,∠BAD=90°,∠DCB=90°,EF分別是BD、AC的中點,請你說明EF與AC的位置關系.
②如圖3所示,?ABCD中,以AC為斜邊作Rt△ACE,∠AEC=90°,且∠BED=90°,試說明平行四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)在圖(1)網(wǎng)格紙上,畫出所給圖形關于直線l對稱的圖形;
(2)如圖(2),四邊形ABCD的頂點坐標為A(-5,1),B(-1,1),C(-1,6),D(-5,4),請作出四邊形ABCD關于y軸的對稱圖形,并寫出其坐標.

查看答案和解析>>

同步練習冊答案