已知:拋物線yax2bxcx軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)Bx軸的正半軸上,點(diǎn)Cy軸的正半軸上,線段OB、OC的長(OBOC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.

(1)求A、BC三點(diǎn)的坐標(biāo);

(2)求此拋物線的表達(dá)式;

(3)求△ABC的面積;

(4)若點(diǎn)E是線段AB上的一個動點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)EEFACBC于點(diǎn)F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求Sm之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;

(5)在(4)的基礎(chǔ)上試說明S是否存在最大值,若存在,請求出S的最大值,并求出此時點(diǎn)E的坐標(biāo),判斷此時△BCE的形狀;若不存在,請說明理由.

答案:
解析:

  解:(1)解方程x2-10x+16=0得x1=2,x2=8

  ∵點(diǎn)Bx軸的正半軸上,點(diǎn)Cy軸的正半軸上,且OBOC

  ∴點(diǎn)B的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,8)

  又∵拋物線yax2bxc的對稱軸是直線x=-2

  ∴由拋物線的對稱性可得點(diǎn)A的坐標(biāo)為(-6,0)

  ∴A、B、C三點(diǎn)的坐標(biāo)分別是A(-6,0)、B(2,0)、C(0,8)

  (2)∵點(diǎn)C(0,8)在拋物線yax2bxc的圖象上

  ∴c=8,將A(-6,0)、B(2,0)代入表達(dá)式yax2bx+8,得

   解得

  ∴所求拋物線的表達(dá)式為y=-x2x+8

  (3)∵AB=8,OC=8

  ∴SABC×8×8=32

  (4)依題意,AEm,則BE=8-m,

  ∵OA=6,OC=8,∴AC=10

  ∵EFAC ∴△BEF∽△BAC

  ∴  即EF

  過點(diǎn)FFGAB,垂足為G,則sin∠FEG=sin∠CAB

  ∴ ∴FG·=8-m

  ∴SSBCESBFE(8-m)×8-(8-m)(8-m)

  =(8-m)(8-8+m)=(8-m)m=-m2+4m

  自變量m的取值范圍是0<m<8

  (5)存在.理由:

  ∵S=-m2+4m=-(m-4)2+8  且-<0,

  ∴當(dāng)m=4時,S有最大值,S最大值=8

  ∵m=4,∴點(diǎn)E的坐標(biāo)為(-2,0)

  ∴△BCE為等腰三角形.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線yax 2bx-4a經(jīng)過A(-1,0)、C(0,4)兩點(diǎn),與x軸交于另一點(diǎn)B

(1)求拋物線的解析式;

(2)若點(diǎn)D(mm+1)在第一象限的拋物線上, 求點(diǎn)D關(guān)于直線BC對稱的點(diǎn)的坐標(biāo);

(3)在(2)的條件下,連結(jié)BD,若點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線yax+bx+c軸交于兩點(diǎn),若兩點(diǎn)的橫坐標(biāo)分別是一元二次方程的兩個實數(shù)根,與軸交于點(diǎn)(0,3),

1.(1)求拋物線的解析式;

2.(2)在此拋物線上求點(diǎn),使.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京師大附中九年級上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

 已知拋物線yax+bx+c軸交于兩點(diǎn),若兩點(diǎn)的橫坐標(biāo)分別是一元二次方程的兩個實數(shù)根,與軸交于點(diǎn)(0,3),

1.(1)求拋物線的解析式;

2.(2)在此拋物線上求點(diǎn),使.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年北京師大附中九年級第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

已知拋物線yax+bx+c軸交于兩點(diǎn),若兩點(diǎn)的橫坐標(biāo)分別是一元二次方程的兩個實數(shù)根,與軸交于點(diǎn)(0,3),

1.(1)求拋物線的解析式;

2.(2)在此拋物線上求點(diǎn),使.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆湖南省九年級下學(xué)期第一次月考考試數(shù)學(xué)卷 題型:選擇題

.(13分)已知拋物線y=ax 2+bx+c經(jīng)過O(0,0),A(4,0),B(3,)三點(diǎn),連接AB,過點(diǎn)B作BC∥軸交拋物線于點(diǎn)C.動點(diǎn)E、F分別從O、A兩點(diǎn)同時出發(fā),其中點(diǎn)E沿線段OA以每秒1個單位長度的速度向A點(diǎn)運(yùn)動,點(diǎn)F沿折線A→B→C以每秒1個單位長度的速度向C點(diǎn)運(yùn)動.設(shè)動點(diǎn)運(yùn)動的時間為t(秒).

(1)求拋物線的解析式;

(2)記△EFA的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并求S的最大值,指出此時△EFA的形狀;

(3)是否存在這樣的t值,使△EFA是直角三角形?若存在,求出此時E、F兩點(diǎn)的坐標(biāo);若不存在,請說明理由.

 

 

 

查看答案和解析>>

同步練習(xí)冊答案