【題目】某市規(guī)定了每月用水18立方米以內(nèi)(含18立方米)和用水18立方米以上兩種不同的收費標(biāo)準(zhǔn).該市的用戶每月應(yīng)交水費y(元)是用水量x(立方米)的函數(shù),其圖象如圖所示.
(1)若某月用水量為18立方米,則應(yīng)交水費多少元?
(2)當(dāng)用水18立方米以上時,每立方米應(yīng)交水費多少元?
(3)若小敏家某月交水費81元,則這個月用水量為多少立方米?
【答案】(1)45;(2)3;(3)這個月用水量為30立方米
【解析】
(1)根據(jù)圖象數(shù)據(jù)即可求解;
(2)根據(jù)函數(shù)圖象上點的坐標(biāo),可得答案;
(3)根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案.
(1)應(yīng)交水費45元;
(2)(7545)(2818)
30103(元)
(3)由81>45得,用水量超過18立方米,
設(shè)函數(shù)表達(dá)式為ykxb(x18),
因為直線ykxb過點(18,45),(28,75),
所以
解得
所以,
當(dāng)y81時,3x981,解得x30.
即這個月用水量為30立方米
科目:初中數(shù)學(xué) 來源: 題型:
【題目】收集和整理數(shù)據(jù).
某中學(xué)七(1)班學(xué)習(xí)了統(tǒng)計知識后,數(shù)學(xué)老師要求每個學(xué)生就本班學(xué)生的上學(xué)方式進(jìn)行一次全面調(diào)查,如圖是一同學(xué)通過收集數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:(每個學(xué)生只選擇1種上學(xué)方式).
(1)求該班乘車上學(xué)的人數(shù);
(2)將頻數(shù)分布直方圖補充完整;
(3)若該校七年級有1200名學(xué)生,能否由此估計出該校七年級學(xué)生騎自行車上學(xué)的人數(shù),為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某市九年級學(xué)生學(xué)業(yè)考試體育成績,現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績進(jìn)行分段(A:50分; B:49-45分;C:44-40分;D:39-30分;E:29-0分).每段包含最高分,不包含最低分,統(tǒng)計表如下,統(tǒng)計圖如圖所示.
分?jǐn)?shù)段 | 頻數(shù)(人) | 百分比 |
根據(jù)上面提供的信息,回答下列問題:
(1)在統(tǒng)計表中,的值為___, 的值為__,并將統(tǒng)計圖補充完整.
(2)成績在40分以上定為優(yōu)秀,那么該市今年10440名九年級學(xué)生中體育成績?yōu)閮?yōu)秀的學(xué)生約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩張寬度相等的矩形疊放在一起得到如圖所示的四邊形ABCD,則四邊形ABCD是___________形,若兩張矩形紙片的長都是10,寬都是4,那么四邊形ABCD周長的最大值=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩個工廠位于一段直線形河的異側(cè),A廠距離河邊AC=5km,B廠距離河邊BD=1km,經(jīng)測量CD=8km,現(xiàn)準(zhǔn)備在河邊某處(河寬不計)修一個污水處理廠E.
(1)設(shè)ED=x,請用x的代數(shù)式表示AE+BE的長;
(2)為了使兩廠的排污管道最短,污水廠E的位置應(yīng)怎樣來確定此時需要管道多長?
(3)通過以上的解答,充分展開聯(lián)想,運用數(shù)形結(jié)合思想,請你猜想的最小值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“和諧號”火車從車站出發(fā),在行駛過程中速度y(單位:m/s)與時間x(單位:s)的關(guān)系如圖所示,其中線段BC∥x軸.請根據(jù)圖象提供的信息解答下列問題:
(1)當(dāng)0≤x≤10,求y關(guān)于x的函數(shù)解析式;
(2)求C點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1、圖2是兩張形狀大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,線段AB、EF的端點均在小正方形的頂點上.
(1)如圖1,作出以AB為對角線的正方形并直接寫出正方形的周長;
(2)如圖2,以線段EF為一邊作出等腰△EFG(點G在小正方形頂點處)且頂角為鈍角,并使其面積等于4.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com