【題目】如圖,在以A、B、C、D、E為頂點(diǎn)的五面體中,AD⊥平面ABC,AD∥BE,AC⊥CB,AB=2BE=4AD=4.
(1)O為AB的中點(diǎn),F(xiàn)是線段BE上的一點(diǎn),BE=4BF,證明:OF∥平面CDE;
(2)當(dāng)直線DE與平面CBE所成角的正切值為 時,求平面CDE與平面ABC所成銳二面角的余弦值.

【答案】
(1)證明:如圖1,取BE中點(diǎn)G.連接AG,

∵AD∥BE,AB=2BE=4AD=4.∴AD+EG,AD∥EG

∴四邊形ADEG為平行四邊形,即AG∥ED,

又∵O為AB的中點(diǎn),F(xiàn)是線段BE上的一點(diǎn),BE=4BF,

∴F為BG中點(diǎn),OF∥AG,OF∥DE

∵OF面CDE,DE面CDE,∴OF∥平面CDE


(2)如圖2,由(1)得AG∥DE,∴直線DE與平面CBE所成角等于直線AG與平面CBE所成角..

∵AD⊥平面ABC,AD∥BE,AC⊥CB,∴ AC⊥面BCE.

連接CG,∴∠AGC就是直線AG與平面CBE所成角,∴tan∠AGC= ,可得sin

又∵AG= ,∴AC=2 ,

在直角△ABC中,∵AB=4,∴BC=2 ,

連接OC,可得OC⊥AB,故以O(shè)為原點(diǎn),射線OC,OB分別為x,y軸,建立空間直角坐標(biāo)系,

則C(2,0,0),A(0,﹣2,0),D(0,﹣2,1),B(0,2,0),E(0,2,2).

設(shè)面CDE的法向量為 , ,

,可得 ,

可知平面ABC的法向量為

∴cos< , >=

平面CDE與平面ABC所成銳二面角的余弦值為


【解析】(1)如圖1,取BE中點(diǎn)G.連接AG,只需AG∥ED∥OF即可得到OF∥平面CDE(2)由(Ⅰ)得AG∥DE,∴直線DE與平面CBE所成角等于直線AG與平面CBE所成角. 易得AC⊥面BCE.連接CG,∴∠AGC就是直線AG與平面CBE所成角,∴tan∠AGC= ,可得 AC=2 ,BC=2 ,
連接OC,可得OC⊥AB,故以O(shè)為原點(diǎn),射線OC,OB分別為x,y軸,建立空間直角坐標(biāo)系,利用向量法求解即可.
【考點(diǎn)精析】利用直線與平面平行的判定對題目進(jìn)行判斷即可得到答案,需要熟知平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ﹣ax,e為自然對數(shù)的底數(shù) (Ⅰ)若函數(shù)f(x)的圖象在點(diǎn)(e2 , f(e2))處的切線方程為 3x+4y﹣e2=0,求實(shí)數(shù)a,b的值;
(Ⅱ)當(dāng)b=1時,若存在 x1 , x2∈[e,e2],使 f(x1)≤f′(x2)+a成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}與{bn}滿足an=2bn+3(n∈N*),若{bn}的前n項(xiàng)和為Sn= (3n﹣1)且λan>bn+36(n﹣3)+3λ對一切n∈N*恒成立,則實(shí)數(shù)λ的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1


(1)求出表中M、p及圖中a的值;
(2)試估計他們參加社區(qū)服務(wù)的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin(2x+φ)+cos(2x+φ)為偶函數(shù),且在[0, ]上是增函數(shù),則φ的一個可能值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣3,﹣1, ,1,3這五個數(shù)中,隨機(jī)抽取一個數(shù),記為a,若數(shù)a使關(guān)于x的不等式組 無解,且使關(guān)于x的分式方程 =﹣1有整數(shù)解,那么這5個數(shù)中所有滿足條件的a的值之和是( 。
A.﹣3
B.﹣2
C.﹣
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“世界那么大,我想去看看”一句話紅遍網(wǎng)絡(luò),騎自行車旅行越來越受到人們的喜愛,各種品牌的山地自行車相繼投放市場.順風(fēng)車行經(jīng)營的A型車2015年6月份銷售總額為3.2萬元,今年經(jīng)過改造升級后A型車每輛銷售價比去年增加400元,若今年6月份與去年6月份賣出的A型車數(shù)量相同,則今年6月份A型車銷售總額將比去年6月份銷售總額增加25%.
(1)求今年6月份A型車每輛銷售價多少元(用列方程的方法解答);
(2)該車行計劃7月份新進(jìn)一批A型車和B型車共50輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最多?
A、B兩種型號車的進(jìn)貨和銷售價格如表:

A型車

B型車

進(jìn)貨價格(元/輛)

1100

1400

銷售價格(元/輛)

今年的銷售價格

2400

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某運(yùn)動員在一場籃球比賽中的技術(shù)統(tǒng)計如表所示:

技術(shù)

上場時間(分鐘)

出手投籃(次)

投中
(次)

罰球得分

籃板
(個)

助攻(次)

個人總得分

數(shù)據(jù)

46

66

22

10

11

8

60

注:表中出手投籃次數(shù)和投中次數(shù)均不包括罰球.
根據(jù)以上信息,求本場比賽中該運(yùn)動員投中2分球和3分球各幾個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,把∠α=60°的一個單獨(dú)的菱形稱作一個基本圖形,將此基本圖形不斷的復(fù)制并平移,使得下一個菱形的一個頂點(diǎn)與前一個菱形的中線重合,這樣得到圖②,圖③,…
(1)觀察以上圖形并完成下表:

圖形名稱

基本圖形的個數(shù)

菱形的個數(shù)

圖①

1

1

圖②

2

3

圖③

3

7

圖④

4

猜想:在圖(n)中,菱形的個數(shù)為(用含有n(n≥3)的代數(shù)式表示);
(2)如圖,將圖(n)放在直角坐標(biāo)系中,設(shè)其中第一個基本圖的對稱中心O1的坐標(biāo)為(x1 , 1),則x1=;第2017個基本圖形的中心O2017的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊答案