【題目】記多項(xiàng)式x2+2x+1為 f(x),多項(xiàng)式y2-4y+4為f(y),且多項(xiàng)式f(x)的項(xiàng)數(shù)為a,f(y)的次數(shù)、一次項(xiàng)系數(shù)分別是b、m,數(shù)a,b,m數(shù)軸上分別對(duì)應(yīng)著點(diǎn)A,B,M.
(1)求代數(shù)式a2-b2的值;
(2)數(shù)軸上有一點(diǎn)G,且到點(diǎn)M,B的距離相等.
①求線段GA的長(zhǎng);
②若n是關(guān)于x的方程mx+b=ax的解,且數(shù)軸上點(diǎn)N對(duì)應(yīng)著數(shù)n,比較線段NG與NB的大。
【答案】(1)5;(2)①線段GA的長(zhǎng)為4;②NB>NG.
【解析】
(1)根據(jù)多項(xiàng)式的項(xiàng)數(shù)、次數(shù)的定義得到a,b的值,然后代入求值;
(2)首先求出點(diǎn)G表示的數(shù),然后再求線段GA的長(zhǎng);
(3)將a=3,b=2,m=-4代入方程并求解,即可得到數(shù)軸上點(diǎn)N對(duì)應(yīng)的數(shù)n,然后分別計(jì)算出線段NG和線段NB的長(zhǎng),比較即可.
解:(1)由題意可得:a=3,b=2,m=-4,
∴a2-b2=9-4=5;
(2)①∵點(diǎn)G到點(diǎn)M,B的距離相等,
∴點(diǎn)G表示的數(shù)為:,
∴線段GA的長(zhǎng)為:3-(-1)=4;
②由題意可知,該方程為:-4x+2=3x,
解得:,即數(shù)軸上點(diǎn)N對(duì)應(yīng)的數(shù)n,
∴線段NG的長(zhǎng)為:,
線段NB的長(zhǎng)為:,
∴NB>NG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣(x+1)(x﹣3)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為該拋物線的對(duì)稱軸上一點(diǎn),當(dāng)點(diǎn)D到直線BC和到x軸的距離相等時(shí),則點(diǎn)D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如下表:
X | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
⑴ac<0;
⑵當(dāng)x>1時(shí),y的值隨x值的增大而減小.
⑶3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
⑷當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
其中正確的個(gè)數(shù)為()
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說法中,錯(cuò)誤的是( 。
A. 拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣2,0) B. 拋物線與y軸的交點(diǎn)坐標(biāo)為(0,6)
C. 拋物線的對(duì)稱軸是直線x=0 D. 拋物線在對(duì)稱軸左側(cè)部分是上升的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,動(dòng)點(diǎn)從點(diǎn)出發(fā), 在邊上以每秒的速度向點(diǎn)勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),在邊上以每秒的速度向點(diǎn)勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,連接.
若,求的值;
若與相似,求的值;
當(dāng)為何值時(shí),四邊形的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:求1+2+22+23+24+…+22019的值.
解:設(shè)S=1+2+22+23+24+…+22019,將等式兩邊同時(shí)乘以2得:2S=2+22+23+24+25+…+22019+22020
將下式減去上式得2S-S=22020-1
即S=22020-1
即1+2+22+23+24+…=22020-1
請(qǐng)你仿照此法計(jì)算:
(1)1+2+22+23+24+…+220
(2)1+5+52+53+54+…+5n(其中n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自主學(xué)習(xí),請(qǐng)閱讀下列解題過程.
解一元二次不等式:x2﹣5x>0.
解:設(shè)x2﹣5x=0,解得:x1=0,x2=5,則拋物線y=x2﹣5x與x軸的交點(diǎn)坐標(biāo)為(0,0)和(5,0).畫出二次函數(shù)y=x2﹣5x的大致圖象(如圖所示),由圖象可知:當(dāng)x<0,或x>5時(shí)函數(shù)圖象位于x軸上方,此時(shí)y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集為:x<0,或x>5.
通過對(duì)上述解題過程的學(xué)習(xí),按其解題的思路和方法解答下列問題:
(1)上述解題過程中,滲透了下列數(shù)學(xué)思想中的 和 .(只填序號(hào))
①轉(zhuǎn)化思想 ②分類討論思想 ③數(shù)形結(jié)合思想
(2)一元二次不等式x2﹣5x<0的解集為 .
(3)用類似的方法解一元二次不等式:x2﹣2x﹣3>0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在體育測(cè)試時(shí),初三的一名高個(gè)子男生推鉛球,已知鉛球所經(jīng)過的路線是某二次函數(shù)圖象的一部分(如圖),若這個(gè)男生出手處A點(diǎn)的坐標(biāo)為(0,2),鉛球路線的最高處B點(diǎn)的坐標(biāo)為B(6,5).
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)該男生把鉛球推出去多遠(yuǎn)?(精確到0.01米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】―拋物線與x軸的交點(diǎn)是A(-2,0),B(1,0),且經(jīng)過點(diǎn)C(2,8).
(1)求該拋物線的解析式;
(2)求該拋物線的頂點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com