【題目】如圖,Rt△ABC中,∠C=90°,AB=4,F是線段AC上一點,過點A的⊙FAB于點DE是線段BC上一點,且ED=EB,則EF的最小值為 ( )

A. 3 B. 2 C. D. 2

【答案】B

【解析】分析FGABG,EHABHFIEHI,FI=GH由垂徑定理得到AG=DG=AD由等腰三角形三線合一得到DH=HB=DB,從而得到GH=DG+DH=AB=EFFI,即可得到結(jié)論

詳解FGABG,EHABH,FIEHI,FGHI是矩形FI=GHFGABF為圓心,AG=DG=ADED=EB,EHAB,DH=HB=DB,GH=DG+DH=AD+DB=AB=FI=EFFI,EFEF的最小值為故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)上學(xué)期的數(shù)學(xué)歷次測驗成績?nèi)缦卤硭荆?/span>

測驗類別

平時測驗

期中測驗

期末測驗

1

2

3

成績

100

106

106

105

110

(1)該同學(xué)上學(xué)期5次測驗成績的眾數(shù)為 ,中位數(shù)為 ;

(2)該同學(xué)上學(xué)期數(shù)學(xué)平時成績的平均數(shù)為 ;

(3)該同學(xué)上學(xué)期的總成績是將平時測驗的平均成績、期中測驗成績、期末測驗成績按照2:3:5的比例計算所得,求該同學(xué)上學(xué)期數(shù)學(xué)學(xué)科的總評成績(結(jié)果保留整數(shù))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖所示,∠B=OAF=90°,BO=3cmAB=4cm,AF=12cm,求圖中半圓的面積.

2)在直角坐標系內(nèi),一次函數(shù)y=kx+b的圖象經(jīng)過三點A2,0),B0,2),Cm,3).求這個一次函數(shù)解析式并求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBE是高,∠ABE=45°,點FAB的中點,ADFE,BE分別交于點G、H.有下列結(jié)論:①FD=FE;AH=2CD;BCAD=AE2;SABC=2SADF.其中正確結(jié)論的序號是_____.(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側(cè)的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F,連接AE、DE、DF.

(1)求證:∠E=C;

(2)若DF=6cm,cosB=,E是弧AB的中點,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,以每袋標準質(zhì)量45克為標準,檢測每袋的質(zhì)量是否符合該標準,超過或不足的克數(shù)分別用正、負數(shù)來表示,記錄如下:

與標準質(zhì)量的差值(單位:克)

5

3

0

1

2

5

袋數(shù)

1

3

6

4

5

1

回答下列問題:

1)這20袋樣品中,完全符合每袋標準質(zhì)量45克的有   袋;

2)這批樣品的總質(zhì)量是多少克?(要求寫出算式).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)ykx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y3x的圖象相交于點C,點C的橫坐標為1

1)求一次函數(shù)ykx+b的解析式;

2)若點Dy軸負半軸上,且滿足SCODSBOC,請直接寫出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市舉行知識大賽,A校、B校各派出5名選手組成代表隊參加決賽,兩校派出選手的決賽成績?nèi)鐖D所示.

(1)根據(jù)圖示填寫下表:

平均數(shù)/

中位數(shù)/

眾數(shù)/

A

______

85

______

B

85

______

100

(2)結(jié)合兩校成績的平均數(shù)和中位數(shù),分析哪個學(xué)校的決賽成績較好;

(3)計算兩校決賽成績的方差,并判斷哪個學(xué)校代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將的邊延長到點,使,交邊于點.

求證:

,求證:四邊形是矩形

查看答案和解析>>

同步練習(xí)冊答案