【題目】(1)如圖1,AB∥CD,則∠E+∠G與∠B+∠F+∠D有何關(guān)系?

(2)如圖2,若AB∥CD,又能得到什么結(jié)論?請直接寫出結(jié)論.

【答案】(1) ∠E+∠G=∠B+∠F+∠D;

(2) ∠B+∠F1+∠F2+…+∠Fn-1+∠D=∠E1+∠E2+…+∠En.

【解析】

(1)過點EEMAB,過點FFNAB,過點GGHCD,根據(jù)平行線的性質(zhì)可得答案;

(2) 根據(jù)平行線的性質(zhì)易得:∠B+∠F1+∠F2+…+∠Fn-1+∠D=∠E1+∠E2+…+∠En.

解:(1)過點EEM∥AB,過點FFN∥AB,過點GGH∥CD.

∵AB∥CD.

∴AB∥EM∥FN∥GH∥CD.

∴∠1=∠B,∠2=∠3,∠4=∠5,∠6=∠D.

∴∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D,

即∠BEF+,∠FGD=∠B+∠EFG+∠D.

(2)∠B+∠F1+∠F2+…+∠Fn-1+∠D=∠E1+∠E2+…+∠En.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=∠ADC=90°,AB=AD= ,CD= ,點P在四邊形ABCD上,若P到BD的距離為 ,則點P的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方形ABCD中,AB=6厘米,BC=12厘米,點P沿AB邊從點A開始向點B以1厘米/秒的速度移動,點Q沿BC從點B開始向點C以2厘米/秒的速度移動,如果P、Q同時出發(fā),用t(秒)表示移動的時間(0≤t≤6).

(1)當(dāng)PB=2厘米時,求點P移動多少秒?

(2)t為何值時,△PBQ為等腰直角三角形?

(3)求四邊形PBQD的面積,并探究一個與計算結(jié)果有關(guān)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,E為AD的中點,F(xiàn)為BC邊上一動點,設(shè)BF=t(0≤t≤2),線段EF的垂直平分線GH分別交邊CD,AB于點G,H,過E做EM⊥BC于點M,過G作GN⊥AB于點N.
(1)當(dāng)t≠2時,求證:△EMF≌△GNH;
(2)順次連接E、H、F、G,設(shè)四邊形EHFG的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點C在線段AB上,點MN分別是AC、BC的中點.

1)若AC = 8,CB = 6,求線段MN的長;

2)若AC = aMN = b,求線段BC的長用含的代數(shù)式可以表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個點從數(shù)軸上的原點開始,先向右移動3個單位長度,再向左移動5個單位長度,可以看到終點表示的數(shù)是-2,已知點A,B是數(shù)軸上的點,請參照圖并思考,完成下列各題.

(1)如果點A表示數(shù)-3,將點A向右移動7個單位長度,那么終點B表示的數(shù)是_____,A,B兩點間的距離是_____;

(2)如果點A表示數(shù)3,將A點向左移動7個單位長度,再向右移動5個單位長度,那么終點表示的數(shù)是_____,A,B兩點間的距離為_____;

(3)如果點A表示數(shù)-4,將A點向右移動168個單位長度,再向左移動256個單位長度,那么終點B表示的數(shù)是_____,A、B兩點間的距離是_____;

(4)一般地,如果A點表示的數(shù)為m,將A點向右移動n個單位長度,再向左移動p個單位長度,那么請你猜想終點B表示什么數(shù)?A,B兩點間的距離為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC三個內(nèi)角的平分線交于點O,點D在CA的延長線上,且DC=BC,AD=AO,若BAC=80°,則BCA的度數(shù)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x與反比例函數(shù)y= (k≠0,x>0)的圖象交于點A(1,a),B是反比例函數(shù)圖象上一點,直線OB與x軸的夾角為α,tanα=
(1)求k的值.
(2)求點B的坐標(biāo).
(3)設(shè)點P(m,0),使△PAB的面積為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末小石去博物館參加綜合實踐活動,乘坐公共汽車0.5小時后想換乘另一輛公共汽車,他等候一段時間后改為利用手機掃碼騎行摩拜單車前往.已知小石離家的路程s(單位:千米)與時間t(單位:小時)的函數(shù)關(guān)系的圖象大致如圖.則小石騎行摩拜單車的平均速度為(
A.30千米/小時
B.18千米/小時
C.15千米/小時
D.9千米/小時

查看答案和解析>>

同步練習(xí)冊答案