解:(1)DC=BF.
理由:在正方形ABDE中,AD=AB,∠DAB=90°,
又在正方形ACGF,AF=AC,∠FAC=90°,
∴∠DAB=∠FAC=90°,
∵∠DAC=∠DAB+∠BAC,
∠FAB=∠FAC+∠BAC,
∴∠DAC=∠FAB,
∴△DAC≌△FAB,
∴DC=FB.
(2)BF⊥CD.
∵△ABF≌△ADC,
∴∠AFN=∠ACD,
又∵在直角△ANF中,∠AFN+∠ANF=90°,∠ANF=∠CNM,
∴∠ACD+∠CNM=90°,
∴∠NMC=90°
∴BF⊥CD.
(3)根據(jù)正方形的性質(zhì)可得:AD=AB,AC=AF,
∠DAB=∠CAF=90°,
∴∠DAC=∠BAF=90°+∠BAC,
∴△DAC≌△BAF(SAS),
故△ADC可看作△ABF繞A點逆時針旋轉(zhuǎn)90°得到.
分析:(1)要求兩條線段的長度關(guān)系,把兩條線段放到兩個三角形中,利用三角形的全等求得兩條線段相等.
(2)根據(jù)全等三角形的對應(yīng)角相等以及直角三角形的兩銳角互補,即可證得∠NMC=90°,可證得證BF⊥CD.
(3)因為AD=AB,AC=AF,∠DAC=∠BAF=90°+∠BAC,故△ABF可看作△ADC繞A點逆時針旋轉(zhuǎn)90°得到.
點評:本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì)及三角形全等的性質(zhì),關(guān)鍵是根據(jù)圖形中兩個三角形的位置關(guān)系解題.