如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+12與x軸的負(fù)半軸交于點(diǎn)A,與y軸的正半軸交于點(diǎn)B,過點(diǎn)B作直線AB的垂線,交x軸正半軸于點(diǎn)C,且線段OC比線段OA長7個(gè)單位.
(1)求直線BC的解析式;
(2)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB以4個(gè)單位/秒的速度向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿線段CB以3個(gè)單位/秒的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接PQ,將線段PQ繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)到PE,使∠QPE=∠ABO,PE與BC交于點(diǎn)I,過點(diǎn)Q作QD⊥PE于點(diǎn)D,連接BD,設(shè)運(yùn)動(dòng)時(shí)間為t秒,求在運(yùn)動(dòng)過程中線段BD的長;
(3)在(2)的條件下,過PQ的中點(diǎn)F作FH⊥BD,垂足為點(diǎn)H,求t為何值時(shí),F(xiàn)H=BD.