【題目】如圖,在ABCD中,過對角線BD上一點PEFBC,GHAB,且CG2BG,SBPG1,則SAEPH=(  )

A. 3B. 4C. 5D. 6

【答案】B

【解析】

由條件可證明四邊形HPFD、BEPG為平行四邊形,可證明S四邊形AEPH=S四邊形PFCG.,再利用面積的和差可得出四邊形AEPH和四邊形PFCG的面積相等,由已知條件即可得出答案.

EFBC,GHAB,

∴四邊形HPFDBEPG、AEPH、CFPG為平行四邊形,

SPEBSBGP

同理可得SPHDSDFP,SABDSCDB,

SABDSPEBSPHDSCDBSBGPSDFP,

S四邊形AEPHS四邊形PFCG

CG2BG,SBPG1,

S四邊形AEPHS四邊形PFCG4×14,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了了解七年級學(xué)生體能狀況,從七年級學(xué)生中隨機抽取部分學(xué)生進行體能測試,測試結(jié)果分為A、BC、D四個等級,并依據(jù)測試成績繪制了如下兩幅尚不完整的統(tǒng)計圖:

1)這次抽樣調(diào)查的樣本容量是   ,請補全條形圖;

2D等級學(xué)生人數(shù)占被調(diào)查人數(shù)的百分比為   ,在扇形統(tǒng)計圖中B等級所對應(yīng)的圓心角為   

3)該校九年級學(xué)生有1600人,請你估計其中A等級的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國科學(xué)技術(shù)館有圓與非圓展品,涉及了等寬曲線的知識.因為圓的任何一對平行切線的距離總是相等的,所以圓是等寬曲線.除了例以外,還有一些幾何圖形也是等寬曲線,如勒洛只角形(1),它是分別以等邊三角形的征個頂點為圓心,以邊長為半徑,在另兩個頂點間畫一段圓弧.三段圓弧圍成的曲邊三角形.圖2是等寬的勒洛三角形和圓.

下列說法中錯誤的是( )

A.勒洛三角形是軸對稱圖形

B.1中,點A上任意一點的距離都相等

C.2中,勒洛三角形上任意一點到等邊三角形DEF的中心的距離都相等

D.2中,勒洛三角形的周長與圓的周長相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+4y軸于點A,并經(jīng)過B44)和C6,0)兩點,點D的坐標為(40),連接ADBC,點F從點O出發(fā),以每秒1個單位長度的速度沿線段OC方向運動,到達點C后停止運動:點M同時從點D出發(fā)以每秒1個單位長度的速度沿x軸正方向運動,當點F停止時點M也停止運動.設(shè)點F的運動時間為t秒,過點FAB的垂線EF交直線AB于點E,交AD于點H

1)求拋物線的解析式;

2)以線段EH為斜邊向右作等腰直角EHG,當點G落在第一象限內(nèi)的拋物線上時,求出t的值;

3)設(shè)EFM與四邊形ADCB重合時的面積為S,請直接寫出St的函數(shù)關(guān)系式與相應(yīng)的自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011山東濟南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經(jīng)過AC兩點,與AB邊交于點D

1)求拋物線的函數(shù)表達式;

2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S

S關(guān)于m的函數(shù)表達式,并求出m為何值時,S取得最大值;

S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c過等腰RtOABAB兩點,點B在點A的右側(cè),直角頂點A0,3).

1)求b,c的值.

2PAB上方拋物線上的一點,作PQABOB于點Q,連接AP,是否存在點P,使四邊形APQO是平行四邊形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點EBC上的一點,F在線段DE上,且∠AFE=∠ADC

1)若∠AFE70°,∠DEC40°,求∠DAF的大小;

2)若DEAD,求證:AFD≌△DCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊ABAD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關(guān)系?請說明理由;

(3)設(shè)AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關(guān)系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線AB與函數(shù)yx>0)的圖象交于點Am,2),B(2,n).過點AAC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使ODOC,且ACD的面積是6,連接BC

(1)求m,k,n的值;

(2)求ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案