如圖,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,O是BD與CE的交點(diǎn),求證:BO=CO.
考點(diǎn):等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì)
專題:證明題
分析:根據(jù)等邊對(duì)等角可得∠ABC=∠ACB,然后利用“角角邊”證明△BCE和△CBD全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠BCE=∠CBD,再利用等角對(duì)等邊即可得證.
解答:證明:∵AB=AC,
∴∠ABC=∠ACB,
∵BD⊥AC,CE⊥AB,
∴∠BDC=∠CEB=90°,
在△BCE和△CBD中,
∠ABC=∠ACB
∠BDC=∠CEB=90°
BC=CB
,
∴△BCE≌△CBD(AAS),
∴∠BCE=∠CBD,
∴BO=CO.
點(diǎn)評(píng):本題考查了等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),是基礎(chǔ)題,找出△BCE和△CBD全等的條件是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

完成一項(xiàng)工作,甲單做需a天,乙單需做b天,甲、乙、丙合作需c天,則丙單做全部工作所需的天數(shù)是(  )
A、
abc
ab-ac-bc
B、
abc
ab+ac-bc
C、
ab+ac+bc
abc
D、
ab(c-a-b)
c

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,DE是△ABC的中位線,F(xiàn)G為梯形BCED的中位線,若BC=8,則FG等于(  )
A、2 cm
B、3 cm
C、4 cm
D、6 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算a7•a3的值為( 。
A、a21
B、a4
C、a10
D、2a10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知;如圖,AD∥BC,AD=BC,
求證:(1)△ABD≌△CDB;
(2)AB∥CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一支蠟燭長(zhǎng)20厘米,點(diǎn)燃后每小時(shí)燃燒掉5厘米.若用t (時(shí))表示燃燒時(shí)間,用h (厘米)表示剩余長(zhǎng)度,則下列圖象能反映這一變化過(guò)程的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

填表,并在同一坐標(biāo)系內(nèi)作出函數(shù)y=2x-5和y=-x+1的圖象;
填表:y=2x-5
x 0
y 0
y=-x+1
x 0  
y   0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

反比例函數(shù)y=-
1
x
與正比例函數(shù)y=2x在同一坐標(biāo)系內(nèi)的大致圖象為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

方程
1
(x+1)(x-1)
+
1
(x-3)(x-5)
+
1
(x-1)(x-3)
+
1
(x-5)(x-7)
=-
4
15
的解是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案