【題目】已知∠MAN=120°,點C是∠MAN的平分線AQ上的一個定點,點B,D分別在AN,AM上,連接BD.
【發(fā)現(xiàn)】
(1)如圖1,若∠ABC=∠ADC=90°,則∠BCD= °,△CBD是 三角形;
【探索】
(2)如圖2,若∠ABC+∠ADC=180°,請判斷△CBD的形狀,并證明你的結(jié)論;
【應用】
(3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點G,H分別在射線OE,OF上,且△PGH為等邊三角形,則滿足上述條件的△PGH的個數(shù)一共有 .(只填序號)
①2個②3個③4個④4個以上
【答案】(1)60,等邊;(2)等邊三角形,證明見解析(3)④.
【解析】試題分析:(1)利用四邊形的內(nèi)角和即可得出∠BCD的度數(shù),再利用角平分線的性質(zhì)定理即可得出CB,即可得出結(jié)論;
(2)先判斷出∠CDE=∠ABC,進而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四邊形的內(nèi)角和即可得出∠BCD=60°即可得出結(jié)論;
(3)先判斷出∠POE=∠POF=60°,先構(gòu)造出等邊三角形,找出特點,即可得出結(jié)論.
試題解析:(1)如圖1,連接BD,
∵∠ABC=∠ADC=90°,∠MAN=120°,
根據(jù)四邊形的內(nèi)角和得,∠BCD=360°-(∠ABC+∠ADC+∠MAN)=60°,
∵AC是∠MAN的平分線,CD⊥AM.CB⊥AN,
∴CD=CB,(角平分線的性質(zhì)定理),
∴△BCD是等邊三角形;
故答案為:60,等邊;
(2)如圖2,同(1)得出,∠BCD=60°(根據(jù)三角形的內(nèi)角和定理),
過點C作CE⊥AM于E,CF⊥AN于F,
∵AC是∠MAN的平分線,
∴CE=CF,
∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,
∴∠CDE=∠ABC,
在△CDE和△CFB中,
,
∴△CDE≌△CFB(AAS),
∴CD=CB,
∵∠BCD=60°,
∴△CBD是等邊三角形;
(3)如圖3,
∵OP平分∠EOF,∠EOF=120°,
∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,連接PG',
∴△G'OP是等邊三角形,此時點H'和點O重合,
同理:△OPH是等邊三角形,此時點G和點O重合,
將等邊△PHG繞點P逆時針旋轉(zhuǎn)到等邊△PG'H',在旋轉(zhuǎn)的過程中,
邊PG,PH分別和OE,OF相交(如圖中G',H')和點P圍成的三角形全部是等邊三角形,(旋轉(zhuǎn)角的范圍為(0°到60°包括0°和60°),
所以有無數(shù)個;
理由:同(2)的方法.
故答案為④.
科目:初中數(shù)學 來源: 題型:
【題目】已知, 兩地相距,甲、乙兩人沿同一公路從地出發(fā)到地,甲騎摩托車,乙騎自行車,圖中, 分別表示離開地的路程與運動時間的函數(shù)關系的圖像.
()寫出甲、乙的速度和點的坐標.
()若甲到達地后立刻按原速度返回至地,乙到達地后停止.
①試求甲離開地后關于的函數(shù)表達式及自變量的取值范圍,并在直角坐標系中畫出它的圖像.
②試求甲、乙兩人再次相遇的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心.(下列各題結(jié)果精確到0.1m)
(1)求地基的中心到邊緣的距離;
(2)己知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是邊AC、BC的中點,F是BC延長線上一點,∠F=∠B.
(l)若AB=1O,求FD的長;
(2)若AC=BC.求證:△CDE∽△DFE .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y1=-x-2交x軸于點A,交y軸于點B,拋物線y2=ax2+bx+c的頂點為A,且經(jīng)過點B.
(1)求該拋物線的解析式;
(2)求當y1≥y2時x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知點C周圍200 m范圍內(nèi)為原始森林保護區(qū),在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600 m到達B處,測得C在點B的北偏西60°方向上.
(1)MN是否穿過原始森林保護區(qū)?為什么?(參考數(shù)據(jù): ≈1.732)
(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖①,在△ABC中,∠ACB=2∠B,AD為∠BAC的角平分線,
求證:AB=AC+CD
小明同學經(jīng)過思考,得到如下解題思路:
在AB上截取AE=AC,連接DE,得到△ADE≌△ADC,從而易證AB=AC+CD
(1)請你根據(jù)以上解思路寫出證明過程;
(2)如圖②,若AD為△ABC的外角∠CAE平分線,交BC的延長線于點D,
∠D=25°,其他條件不變,求∠B的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一種商品,在一段時間內(nèi),該商品的銷售量y(千克)與每千克的銷售價x(元)滿足一次函數(shù)關系(如圖所示),其中30≤x≤80.
(1)求y關于x的函數(shù)解析式;
(2)若該種商品每千克的成本為30元,當每千克的銷售價為多少元時,獲得的利潤為600元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com