【題目】按照下列要求畫圖并填空:

如圖,點的邊上的一點,

1)過點的垂線,交于點;

2)在(1)的基礎(chǔ)上作的邊上的高,垂足為;

3)線段___________的長度是點到直線的距離;

4)線段這三條線段大小關(guān)系是___________(用“<”號連接).

【答案】(1)作圖見解析;(2)作圖見解析;(3);(4)

【解析】

1)過點P作∠OPC=90°,交OAC即可;

2)過點P作∠PHO=90°OAH即可;

3)根據(jù)點到直線的距離定義,可得線段PH的長度是點到直線的距離.

4)垂線段最短的性質(zhì)可得,線段PC、PH、OC這三條線段大小關(guān)系是PH<PC<OC

1)過點P作∠OPC=90°,交OAC點,如圖所示;

2)過點P作∠PHO=90°OAH點,如圖所示;

3)根據(jù)點到直線的距離定義,

可得線段PH的長度是點到直線的距離.

故答案為:PH

4)根據(jù)垂線段最短性質(zhì)可得

RtPHC中,PC>PH

RtOHP中,OC>PC

∴線段PCPH、OC這三條線段大小關(guān)系是PH<PC<OC

故答案為:PH<PC<OC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次考試中,某班級的數(shù)學(xué)成績統(tǒng)計圖如圖.下列說法錯誤的是(  )

A. 得分在70~80分之間的人數(shù)最多 B. 該班的總?cè)藬?shù)為40

C. 得分在90~100分之間的人數(shù)最少 D. 及格(≥60分)人數(shù)是26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達(dá)A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達(dá)A點停止運動.設(shè)P點運動時間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,已知,,且

1)填空:_____,______,_______;

2)點為射線上一任意一點,連接,作的平分線,交射線于點,作的平分線,交直線于點,請?zhí)骄可渚之間的位置關(guān)系,并加以證明;

3)連接,若恰好平分,則在(2)問的條件下,是否存在角度,使得當(dāng)時,有(其中為不超過10的正整數(shù))?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王剪了兩張直角三角形紙片,進行了如下的操作:

操作一:如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點AB重合,折痕為DE

1)如果AC=6cmBC=8cm,可求得△ACD的周長為

2)如果∠CAD∠BAD=47,可求得∠B的度數(shù)為 ;

操作二:如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=9cm,BC=12cm,請求出CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+b的圖象交反比例函數(shù) 圖象于點A,B,交x軸于點C.

(1)求m的取值范圍;
(2)若點A的坐標(biāo)是(1,﹣4),且 ,求m的值和一次函數(shù)的解析式;
(3)在(2)的情況下,請直接寫出不等式 的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求完成畫圖和填空:

1)作的角平分線;

2)作出邊的中垂線,垂足為,交于點;

3)過點作邊的平行線,交于點;

4)點到邊的距離是_____________

(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法,寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩件服裝的進價共500元,商場決定將甲服裝按30%的利潤定價,乙服裝按20%的利潤定價,實際出售時,兩件服裝均按9折出售,商場賣出這兩件服裝共獲利67元.
(1)求甲乙兩件服裝的進價各是多少元;
(2)由于乙服裝暢銷,制衣廠經(jīng)過兩次上調(diào)價格后,使乙服裝每件的進價達(dá)到242元,求每件乙服裝進價的平均增長率;
(3)若每件乙服裝進價按平均增長率再次上調(diào),商場仍按9折出售,定價至少為多少元時,乙服裝才可獲得利潤(定價取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好治理西太湖水質(zhì),保護環(huán)境,市治污公司決定購買10 臺污水處理設(shè)備,現(xiàn)有A、B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:

經(jīng)調(diào)查:購買-A型設(shè)備比購買一-B型設(shè)備多2萬元,購買2A型設(shè)備比購買4B型設(shè)備少4萬元.

(1)a、b的值;

(2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過47萬元,并且該月要求處理西太湖的污水量不低于1860 噸,則有哪幾種購買方案?請指出最省錢的一種購買方案,并指出相應(yīng)的費用.

查看答案和解析>>

同步練習(xí)冊答案