【題目】已知拋物線L:y=x2+bx﹣2與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),并與y軸相交于點(diǎn)C.且點(diǎn)A的坐標(biāo)是(﹣1,0).
(1)求該拋物線的函數(shù)表達(dá)式及頂點(diǎn)D的坐標(biāo);
(2)判斷△ABC的形狀,并求出△ABC的面積;
(3)將拋物線向左或向右平移,得到拋物線L′,L′與x軸相交于A'、B′兩點(diǎn)(點(diǎn)A′在點(diǎn)B′的左側(cè)),并與y軸相交于點(diǎn)C′,要使△A'B′C′和△ABC的面積相等,求所有滿足條件的拋物線的函數(shù)表達(dá)式.
【答案】(1)y=x2﹣x﹣2,頂點(diǎn)D的坐標(biāo)為(,﹣);(2)△ABC是直角三角形,△ABC的面積是5;(3)所有滿足條件的拋物線的函數(shù)表達(dá)式是y=,y=,y=.
【解析】
(1)根據(jù)拋物線過(guò)點(diǎn)A可以求得拋物線的解析式,然后將拋物線化為頂點(diǎn)式即可得到頂點(diǎn)D的坐標(biāo);
(2)根據(jù)(1)中的函數(shù)解析式可以求得點(diǎn)A、B、C的坐標(biāo),從而可以判斷△ABC的形狀并求出它的面積;
(3)根據(jù)平移的特點(diǎn)和分類(lèi)討論的方法可以求得相應(yīng)的函數(shù)解析式.
(1)∵拋物線L:y=x2+bx﹣2過(guò)點(diǎn)A(﹣1,0),
∴0=×(﹣1)2+b×(﹣1)﹣2,
解得,b=﹣,
∴y=x2﹣x﹣2=,
∴點(diǎn)D的坐標(biāo)為(,﹣),
即該拋物線的函數(shù)表達(dá)式是y=x2﹣x﹣2,頂點(diǎn)D的坐標(biāo)為(,﹣);
(2)當(dāng)y=0時(shí),0=x2﹣x﹣2,解得,x1=﹣1,x2=4,當(dāng)x=0時(shí),y=﹣2,
則點(diǎn)A(﹣1,0),點(diǎn)B(4,0),點(diǎn)C(0,﹣2),
∴AB=5,AC=,BC=2,
∵AB2=AC2+BC2,
∴△ABC是直角三角形,
∴△ABC的面積是:=5;
(3)∵拋物線向左或向右平移,
∴平移后A′B′與平移前的AB的長(zhǎng)度相等,
∴只要平移后過(guò)(0,﹣2)或過(guò)(0,2)即滿足條件,
當(dāng)向右平移時(shí),
令y=,當(dāng)x=0時(shí),y==2,得a=,
此時(shí)y==,
當(dāng)向左平移時(shí),
令y=,當(dāng)x=0時(shí),y==±2,得m=或m=3,
當(dāng)m=時(shí),y=,當(dāng)m=3時(shí),y=﹣2,
由上可得,所有滿足條件的拋物線的函數(shù)表達(dá)式是y=,y=,y=﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列兩段材料,回答問(wèn)題:
材料一:點(diǎn)A(x1,y1),B(x2,y2)的中點(diǎn)坐標(biāo)為(,).例如,點(diǎn)(1,5),(3,﹣1)的中點(diǎn)坐標(biāo)為(,),即(2,2).
材料二:如圖1,正比例函數(shù)l1:y=k1x和l2:y=k2x的圖象相互垂直,分別在l1和l2上取點(diǎn)A,B,使得AO=BO.分別過(guò)點(diǎn)A,B作x軸的垂線,垂足分別為點(diǎn)C,D.顯然,△AOC≌△OBD.設(shè)OC=BD=a,AC=OD=b,則A(﹣a,b),B(b,a).于是k1=﹣,k2=,所以k1k2的值為一個(gè)常數(shù).一般地,一次函數(shù)y=k1x+b1,y=k2x+b2可分別由正比例函數(shù)l1,l2平移得到.
所以,我們經(jīng)過(guò)探索得到的結(jié)論是:任意兩個(gè)一次函數(shù)y=k1x+b1,y=k2x+b2的圖象相互垂直,則k1k2的值為一個(gè)常數(shù).
(1)在材料二中,k1k2= (寫(xiě)出這個(gè)常數(shù)具體的值);
(2)如圖2,在矩形OBAC中A(4,2),點(diǎn)D是OA中點(diǎn),用兩段材料的結(jié)論,求點(diǎn)D的坐標(biāo)和OA的垂直平分線l的解析式;
(3)若點(diǎn)C′與點(diǎn)C關(guān)于OA對(duì)稱(chēng),用兩段材料的結(jié)論,求點(diǎn)C′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線C1:y=ax2+bx+1的頂點(diǎn)坐標(biāo)為D(1,0)且經(jīng)過(guò)點(diǎn)(0,1),將拋物線C1向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物線C2,直線y=x+c,經(jīng)過(guò)點(diǎn)D交y軸于點(diǎn)A,交拋物線C2于點(diǎn)B,拋物線C2的頂點(diǎn)為P.
(1)求拋物線C1的解析式;
(2)如圖2,連結(jié)AP,過(guò)點(diǎn)B作BC⊥AP交AP的延長(zhǎng)線于C,設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連結(jié)BQ并延長(zhǎng)交AC于點(diǎn)F,
①當(dāng)點(diǎn)Q運(yùn)動(dòng)到什么位置時(shí),S△PBD×S△BCF=8?
②連接PQ并延長(zhǎng)交BC于點(diǎn)E,試證明:FC(AC+EC)為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c與x軸交A(﹣1,0),B兩點(diǎn),與y軸交于點(diǎn)C(0,3),拋物線的頂點(diǎn)為點(diǎn)E.
(1)求拋物線的解析式;
(2)經(jīng)過(guò)B,C兩點(diǎn)的直線交拋物線的對(duì)稱(chēng)軸于點(diǎn)D,點(diǎn)P為直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)E時(shí),求△PCD的面積;
(3)點(diǎn)N在拋物線對(duì)稱(chēng)軸上,點(diǎn)M在x軸上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,B為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo)(不寫(xiě)求解過(guò)程);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于 A(﹣1,0),B(4,0),C
(0,﹣4)三點(diǎn),點(diǎn) P 是直線 BC 下方拋物線上一動(dòng)點(diǎn).
(1) 求這個(gè)二次函數(shù)的解析式;
(2) 是否存在點(diǎn) P,使△POC 是以 OC 為底邊的等腰三角形?若存在,求出 P 點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3) 在拋物線上是否存在點(diǎn) D(與點(diǎn) A 不重合)使得 S△DBC=S△ABC,若存在,求出點(diǎn) D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的表達(dá)式是y=ax2+(1﹣a)x+1﹣2a(a為不等于0的常數(shù)),上述拋物線無(wú)論a為何值始終經(jīng)過(guò)定點(diǎn)A和定點(diǎn)B;A為x軸上的點(diǎn),B為第一象限內(nèi)的點(diǎn).
(1)請(qǐng)寫(xiě)出A,B兩點(diǎn)的坐標(biāo):A( ,0);B( , );
(2)如圖1,當(dāng)拋物線與x軸只有一個(gè)公共點(diǎn)時(shí),求a的值;
(3)如圖2,當(dāng)a<0時(shí),若上述拋物線頂點(diǎn)是D,與x軸的另一交點(diǎn)為點(diǎn)C,且點(diǎn)A,B,C,D中沒(méi)有兩個(gè)點(diǎn)相互重合.
求:①△ABC能否是直角三角形,為什么?
②若使得△ABD是直角三角形,請(qǐng)你求出a的值.(求出1個(gè)a的值即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,二次函數(shù)y=ax2+bx+a2+b(a≠0)的圖象為下列圖象之一,則a的值為( )
A. -1 B. 1 C. -3 D. -4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在平面直角坐標(biāo)系xOy中,如果將點(diǎn)P繞點(diǎn)T(0,t)(t>0)旋轉(zhuǎn)180°得到點(diǎn)Q,那么稱(chēng)線段QP為“拓展帶”,點(diǎn)Q為點(diǎn)P的“拓展點(diǎn)”.
(1)當(dāng)t=3時(shí),點(diǎn)(0,0)的“拓展點(diǎn)”坐標(biāo)為 ,點(diǎn)(﹣1,1)的“拓展點(diǎn)”坐標(biāo)為 ;
(2)如果 t>1,當(dāng)點(diǎn)M(2,1)的“拓展點(diǎn)”N在函數(shù)y=﹣的圖象上時(shí),求t的值;
(3)當(dāng)t=1時(shí),點(diǎn)Q為點(diǎn)P(2,0)的“拓展點(diǎn)”,如果拋物線 y=(x﹣m)2﹣1與“拓展帶”P(pán)Q有交點(diǎn),求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com