【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A,0),B,0),且、滿足,現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)CD,連接AC,BD,CD

1請(qǐng)直接寫出C,D兩點(diǎn)的坐標(biāo).

2)點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),連接PC,PO,當(dāng)點(diǎn)PBD上移動(dòng)時(shí)(不與BD重合) 的值是否發(fā)生變化?并說(shuō)明理由.

3在坐標(biāo)軸上是否存在一點(diǎn)M,使三角形MBC的面積與三角形ACD的面積相等?若存在直接寫出點(diǎn)M的坐標(biāo),若不存在,試說(shuō)明理由

【答案】1C(0,2) D(4,2)(2) ,比值不變3M點(diǎn)的坐標(biāo)為(0, )或(0,-)或(7,0)或(-1,0)

【解析】分析:(1)、首先根據(jù)非負(fù)數(shù)的性質(zhì)得出得出ab的值,從而得出點(diǎn)A和點(diǎn)B的坐標(biāo),然后根據(jù)點(diǎn)的平移法則得出點(diǎn)C和點(diǎn)D的坐標(biāo);(2)、過(guò)點(diǎn)P作PE∥AB,根據(jù)平行線的性質(zhì)得出∠DCP=CPE,∠BOP=OPE,從而根據(jù)角度之間的關(guān)系得出答案;(3)、根據(jù)等積法得出點(diǎn)M的坐標(biāo).

詳解:1C(0,2) D(4,2)

(2) ,比值不變,理由如下:

由平移的性質(zhì)可得CD∥AB, 過(guò)點(diǎn)P作PE∥AB,則PE∥CD,

∴∠DCP=∠CPE,∠BOP=∠OPE, ∴∠CPO=∠CPE+∠OPE=∠DCP+∠BOP

3M點(diǎn)的坐標(biāo)為(0, )或(0,-)或(7,0)或(-1,0)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題是真命題的是( 。

A.在同一平面內(nèi),兩條直線的位置只有平行和垂直兩種

B.兩直線平行,同旁內(nèi)角相等

C.過(guò)一點(diǎn)有且只有一條直線與已知直線平行

D.平行于同一條直線的兩直線平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】推理填空:

如圖所示,已知∠1 = ∠2,∠B = ∠C,可推得ABCD

理由如下:

∵∠1 = ∠2(已知),且∠1 = ∠4_____________________

∴∠2 = ∠4(等量代換).

CEBF__________________________.

∴∠_____= ∠3________________________

又∵∠B = ∠C(已知),

∴∠3= ∠B(等量代換),

ABCD_____________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)橫坐標(biāo)分別為整數(shù)的點(diǎn),其順序按HUI圖中“→”方向排列,如(1,0),(20),(2,1),(1,1),(1,2),(2,2)…根據(jù)這個(gè)規(guī)律,第2018個(gè)點(diǎn)的坐標(biāo)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)G在線段CD上,EDFG交于點(diǎn)H∠C=∠1,∠2+∠3=180°

1)求證:CE∥GF;

2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC在直角坐標(biāo)系中,

(1)請(qǐng)寫出△ABC各點(diǎn)的坐標(biāo)

(2)若把△ABC向上平移2個(gè)單位,再向左平移1個(gè)單位得到△A′B′C′,寫出 A′、B′、C′的坐標(biāo),并在圖中畫出平移后圖形

(3)求出三角形ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B兩點(diǎn)同時(shí)從原點(diǎn)O出發(fā),點(diǎn)A以每秒x個(gè)單位長(zhǎng)度沿x軸的負(fù)方向運(yùn)動(dòng),點(diǎn)B以每秒y個(gè)單位長(zhǎng)度沿y軸的正方向運(yùn)動(dòng).

(1)若|x+2y﹣5|+|2x﹣y|=0,試分別求出1秒鐘后A、B兩點(diǎn)的坐標(biāo);

(2)設(shè)∠BAO的外角和∠ABO的外角的平分線相交于點(diǎn)P,問(wèn):點(diǎn)A、B在運(yùn)動(dòng)的過(guò)程中,∠P的大小是否會(huì)發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文化用品商店用2000元購(gòu)進(jìn)一批學(xué)生書包,面市后發(fā)現(xiàn)供不應(yīng)求,商店又購(gòu)進(jìn)第二批同樣的書包,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)數(shù)量的3倍,但單價(jià)貴了4元,結(jié)果第二批用了6300元。

1)求第一批購(gòu)進(jìn)書包的單價(jià)是多少元?

2)若商店銷售這兩批書包時(shí),每個(gè)售價(jià)都是120元,全部售出后,商店共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按圖填空,并注明理由.

⑴完成正確的證明:如圖,已知AB∥CD,求證:∠BED=∠B+∠D

證明:過(guò)E點(diǎn)作EF∥AB(經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與這條直線平行)

∴∠1= ( )

∵AB∥CD(已知)

∴EF∥CD(如果兩條直線與同一直線平行,那么它們也平行)

∴∠2= ( )

又∠BED=∠1+∠2

∴∠BED=∠B+∠D (等量代換).

⑵如圖,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過(guò)程填寫完整.

解:因?yàn)镋F∥AD(已知)

所以∠2=∠3.( )

又因?yàn)椤?=∠2,所以∠1=∠3.(等量代換)

所以AB∥ ( )

所以∠BAC+ =180°( ).

又因?yàn)椤螧AC=70°,所以∠AGD=110°.

圖⑴ 圖⑵

查看答案和解析>>

同步練習(xí)冊(cè)答案