已知二次函數(shù)與一次函數(shù)的圖像相交于點A(-2,4),B(8,2)。如圖所示,則能使成立的x的取值范圍是         

x<-2或x>8

解析試題分析:先觀察圖象確定拋物線y1=ax2+bx+c和一次函數(shù)y2=kx+m(k≠0)的交點的橫坐標(biāo),即可求出y1>y2時,x的取值范圍.由圖形可以看出:拋物線y1=ax2+bx+c和一次函數(shù)y2=kx+m(k≠0)的交點橫坐標(biāo)分別為-2,8,當(dāng)y1>y2時,x的取值范圍正好在兩交點之外,即x<-2或x>8
考點:數(shù)圖結(jié)合
點評:此類試題的解法就是通過圖形分析得出所要求的未知數(shù)的取值范圍

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

問題(一):觀察函數(shù)y=
1
2
x2-x-4
的圖象,填空:當(dāng)函數(shù)值y>0時,x的取值范圍是
 
;當(dāng)函數(shù)值y<0時,x的取值范圍是
 

問題(二):已知二次函數(shù)y=(p-3)x2+(10-p2)x+q,當(dāng)1<x<5時,函數(shù)值y為正,當(dāng)x<1或x>5時,函數(shù)值y為負(fù).
(Ⅰ)求二次函數(shù)的解析式;
(Ⅱ)設(shè)直線y=
1
2
x+1
與二次函數(shù)的圖象交于點A、B.
(1)求點A、B的坐標(biāo),并在給定的直角坐標(biāo)系中畫出直線及二次函數(shù)的圖象;
(2)設(shè)平行于y軸的直線x=t、x=t+2分別交線段AB于點E、F,交二次函數(shù)的圖象于點H、G(H、G不與A、B重合).
①求t的取值范圍;
②是否能適當(dāng)選擇點E的位置,使四邊形EFGH是平行四邊形?如果能,求出此時點E的坐標(biāo);如果不能,請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•通州區(qū)一模)已知二次函數(shù)y=-x2+2ax-4a+8
(1)求證:無論a為任何實數(shù),二次函數(shù)的圖象與x軸總有兩個交點.
(2)當(dāng)x≥2時,函數(shù)值y隨x的增大而減小,求a的取值范圍.
(3)以二次函數(shù)y=-x2+2ax-4a+8圖象的頂點A為一個頂點作該二次函數(shù)圖象的內(nèi)接正三角形AMN(M,N兩點在二次函數(shù)的圖象上),請問:△AMN的面積是與a無關(guān)的定值嗎?若是,請求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

問題(一):觀察函數(shù)數(shù)學(xué)公式的圖象,填空:當(dāng)函數(shù)值y>0時,x的取值范圍是______;當(dāng)函數(shù)值y<0時,x的取值范圍是______.
問題(二):已知二次函數(shù)y=(p-3)x2+(10-p2)x+q,當(dāng)1<x<5時,函數(shù)值y為正,當(dāng)x<1或x>5時,函數(shù)值y為負(fù).
(Ⅰ)求二次函數(shù)的解析式;
(Ⅱ)設(shè)直線數(shù)學(xué)公式與二次函數(shù)的圖象交于點A、B.
(1)求點A、B的坐標(biāo),并在給定的直角坐標(biāo)系中畫出直線及二次函數(shù)的圖象;
(2)設(shè)平行于y軸的直線x=t、x=t+2分別交線段AB于點E、F,交二次函數(shù)的圖象于點H、G(H、G不與A、B重合).
①求t的取值范圍;
②是否能適當(dāng)選擇點E的位置,使四邊形EFGH是平行四邊形?如果能,求出此時點E的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年天津市靜海縣中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

問題(一):觀察函數(shù)的圖象,填空:當(dāng)函數(shù)值y>0時,x的取值范圍是______;當(dāng)函數(shù)值y<0時,x的取值范圍是______.
問題(二):已知二次函數(shù)y=(p-3)x2+(10-p2)x+q,當(dāng)1<x<5時,函數(shù)值y為正,當(dāng)x<1或x>5時,函數(shù)值y為負(fù).
(Ⅰ)求二次函數(shù)的解析式;
(Ⅱ)設(shè)直線與二次函數(shù)的圖象交于點A、B.
(1)求點A、B的坐標(biāo),并在給定的直角坐標(biāo)系中畫出直線及二次函數(shù)的圖象;
(2)設(shè)平行于y軸的直線x=t、x=t+2分別交線段AB于點E、F,交二次函數(shù)的圖象于點H、G(H、G不與A、B重合).
①求t的取值范圍;
②是否能適當(dāng)選擇點E的位置,使四邊形EFGH是平行四邊形?如果能,求出此時點E的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年天津市紅橋區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

問題(一):觀察函數(shù)的圖象,填空:當(dāng)函數(shù)值y>0時,x的取值范圍是______;當(dāng)函數(shù)值y<0時,x的取值范圍是______.
問題(二):已知二次函數(shù)y=(p-3)x2+(10-p2)x+q,當(dāng)1<x<5時,函數(shù)值y為正,當(dāng)x<1或x>5時,函數(shù)值y為負(fù).
(Ⅰ)求二次函數(shù)的解析式;
(Ⅱ)設(shè)直線與二次函數(shù)的圖象交于點A、B.
(1)求點A、B的坐標(biāo),并在給定的直角坐標(biāo)系中畫出直線及二次函數(shù)的圖象;
(2)設(shè)平行于y軸的直線x=t、x=t+2分別交線段AB于點E、F,交二次函數(shù)的圖象于點H、G(H、G不與A、B重合).
①求t的取值范圍;
②是否能適當(dāng)選擇點E的位置,使四邊形EFGH是平行四邊形?如果能,求出此時點E的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案