【題目】濱海長途汽車客運公司規(guī)定旅客可免費攜帶一定質(zhì)量的行李,當(dāng)行李的質(zhì)量超過規(guī)定時,需付的行李費y(元)是行李質(zhì)量x(kg)的一次函數(shù),已知行李質(zhì)量為20kg時需付行李費2元,行李質(zhì)量為50kg時需付行李費8元.
(1)當(dāng)行李的質(zhì)量x超過規(guī)定時,求y與x之間的函數(shù)表達(dá)式.
(2)求旅客最多可免費攜帶行李的質(zhì)量.
【答案】(1)y=x-2;(2)10kg
【解析】
(1)根據(jù)(20,2)、(50,8)利用待定系數(shù)法,即可求出當(dāng)行李的質(zhì)量x超過規(guī)定時,y與x之間的函數(shù)表達(dá)式;
(2)令y=0,求出x值,此題得解.
解:(1)設(shè)y與x的函數(shù)表達(dá)式為y=kx+b.
將(20,2)、(50,8)代入y=kx+b中,得 ,
解得: ,
∴當(dāng)行李的質(zhì)量x超過規(guī)定時,y與x之間的函數(shù)表達(dá)式為y=x-2;
(2)當(dāng)y=0時,即x-2=0,
解得:x=10.
答:旅客最多可免費攜帶行李10kg.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是邊長為8的等邊三角形,AD⊥BC于點D,DE⊥AB于點E.
(1)求證:AE=3EB
(2)若點F是AD的中點,點P是BC邊上的動點,連接PE,PF,如圖2所示,求PE+PF的最小值及此時BP的長;
(3)在(2)的條件下,連接EF,當(dāng)PE+PF取最小值時,△PEF的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=12cm,BC=16cm,AB=20cm,∠CAB的角平分線AD交BC于點D.
(1)根據(jù)題意將圖形補畫完整(要求:尺規(guī)作圖保留作圖痕跡,不寫作法);
(2)求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1過點A(8,0)、B(0,﹣5),直線l2過點C(0,﹣1),l1、l2相交于點D,且△DCB的面積等于8.
(1)求點D的坐標(biāo);
(2)點D的坐標(biāo)是哪個二元一次方程組的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,⊙O是△ABC的內(nèi)切圓,D、E、F是切點.
(1)求證:四邊形ODCE是正方形;
(2)如果AC=6,BC=8,求內(nèi)切圓⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時,y1=0,y2=4,y1<y2,此時M=0.
下列判斷:
①當(dāng)x>0時,y1>y2;
②當(dāng)x<0時,x值越大,M值越;
③使得M大于2的x值不存在;
④使得M=1的x值是或.其中正確的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考低于測試前,某區(qū)教育局為了了解選報引體向上的九年級男生的成績情況,隨機抽查了本區(qū)部分選報引體向上項目的九年級男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中的信息,解答下列問題:
(Ⅰ)寫出扇形圖中a= %,本次抽測中,成績?yōu)?/span>6個的學(xué)生有 名.
(Ⅱ)求這次抽測中,測試成績的平均數(shù),眾數(shù)和中位數(shù);
(Ⅲ)該區(qū)體育中考選報引體向上的男生共有1800人,如果體育中考引體向上達(dá)6個以上(含6個)得滿分,請你估計該區(qū)體育中考選報引體向上的男生能獲得滿分的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,防洪大堤的橫截面ABGH是梯形,背水坡AB的坡度i=1:(垂直高度AE與水平寬度BE的比),AB=20米,BC=30米,身高為1.7米的小明(AM=1.7米)站在大堤A點(M,A,E三點在同一條直線上),測得電線桿頂端D的仰角∠a=20°.
(1)求背水坡AB的坡角;
(2)求電線桿CD的高度.(結(jié)果精確到個位,參考數(shù)據(jù)sin20°≈0.3,cos20°≈0.9,tan20°≈0.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=m°,∠ABC和∠ACD的平分線交于點A1,得∠A1,∠A1BC和∠A1CD的平分線交于點A2,得∠A2…∠A2 017BC和∠A2 017CD的平分線交于點A2 018,則∠A2 018=_____度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com